

Advanced Random Walk Techniques for Social Media Analysis

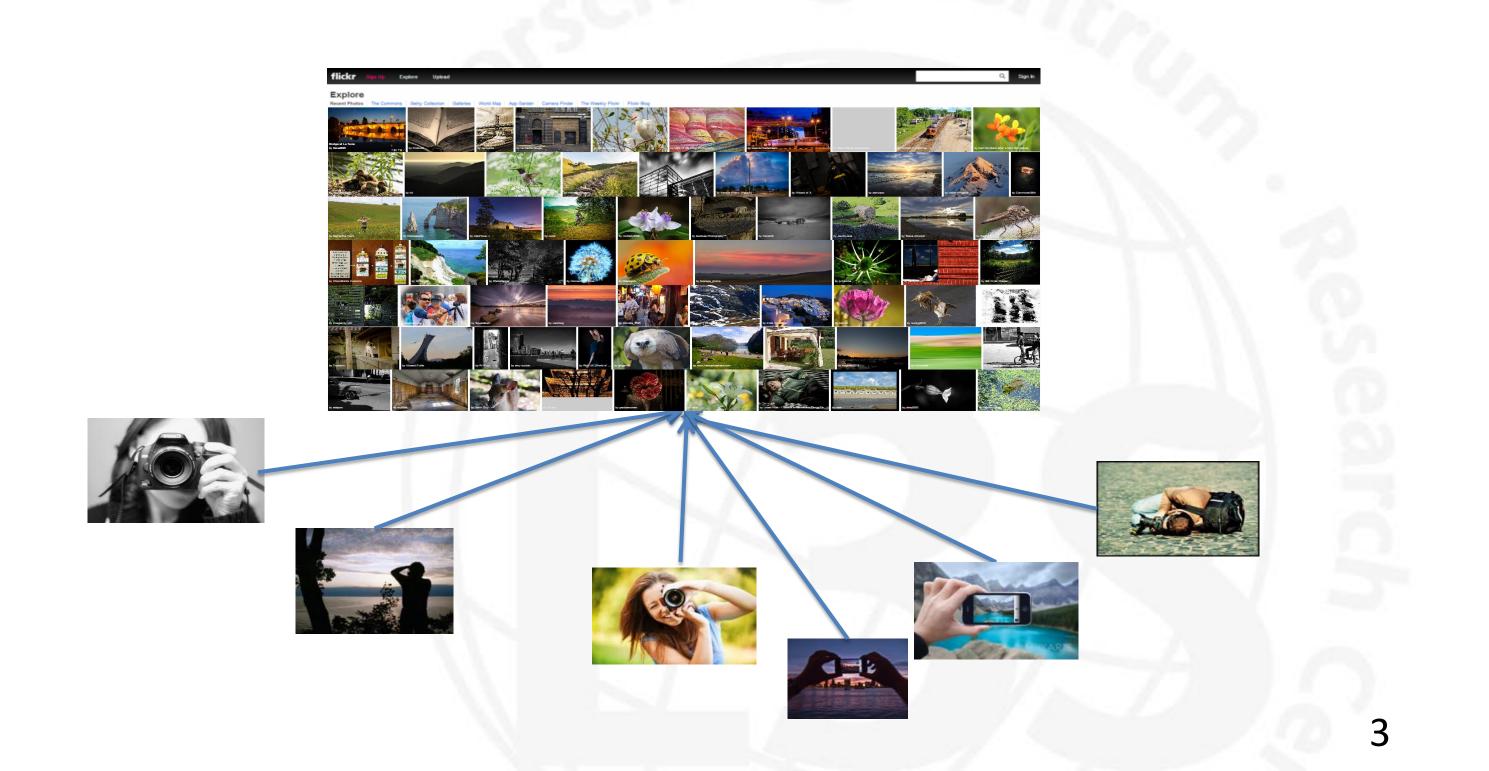
Xiaofei Zhu, Wolfgang Nejdl, Mihai Georgescu L3S Research Center, Leibniz Universit ät Hannover Hannover, Germany

Outline

- Introduction
- Voting Graph
- Adaptive Teleportation Random Walk Model
- Experimental Results
- Conclusion & Future Work

Introduction

Social media sharing platforms, such as Flickr, users are allowed to upload personalized photos and annotate these photos with freely chosen tags.



Introduction

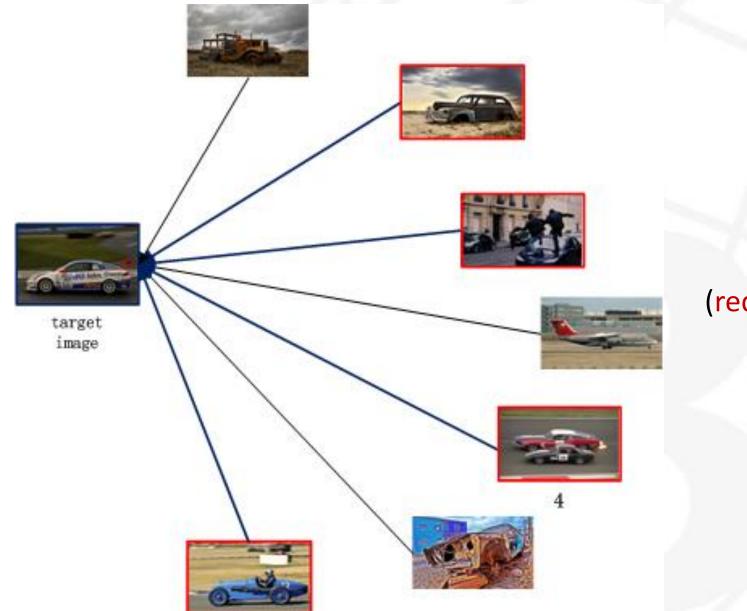
- Limitations of tags:
 - Ambiguous, Incomplete and Personalized
 - Lack of relevance information (e.g., tag frequency, order of tags)
- Question:
 - How to accurately and efficiently learn the relevance of a tag with respect to the visual content?

tiger

grapes green house my garden fransschmit

State-of-the-art

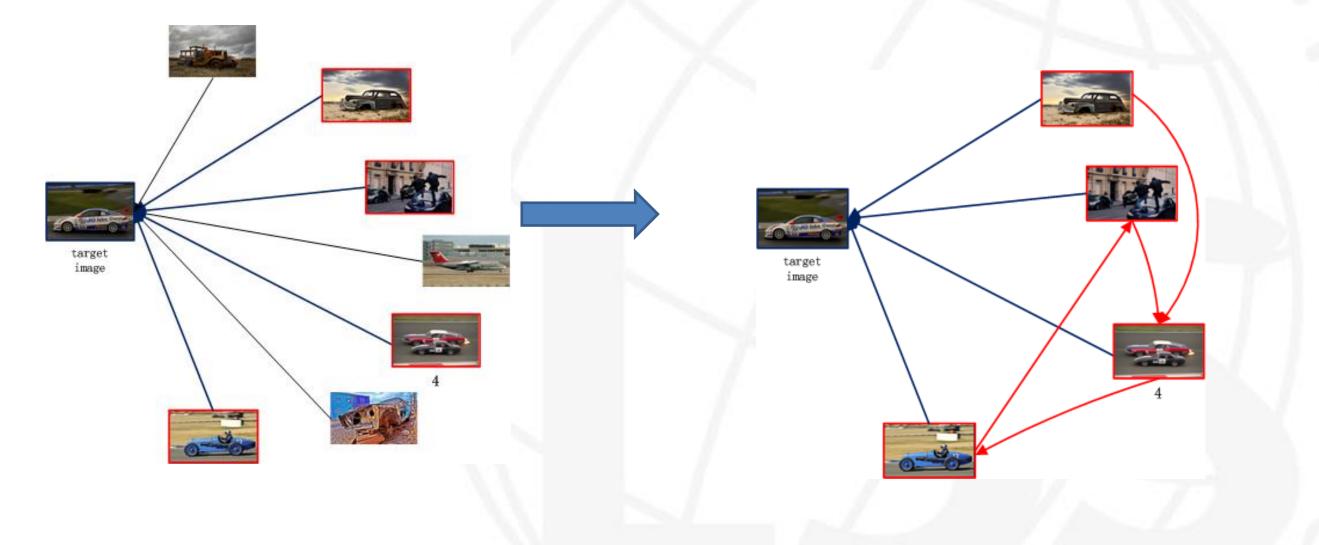
- Neighbor Voting and It's Variants
 - **Assumption:** A tag is considered as relevant to the visual content of a target image if this tag is also used to annotate the visual neighbor images of the target image by lots of different users.
 - **Limitation:** Treat the voting power of each neighbor image either equally or simply based on its visual similarity (suffer from the semantic gap problem)



(red frame marks the tagged images)

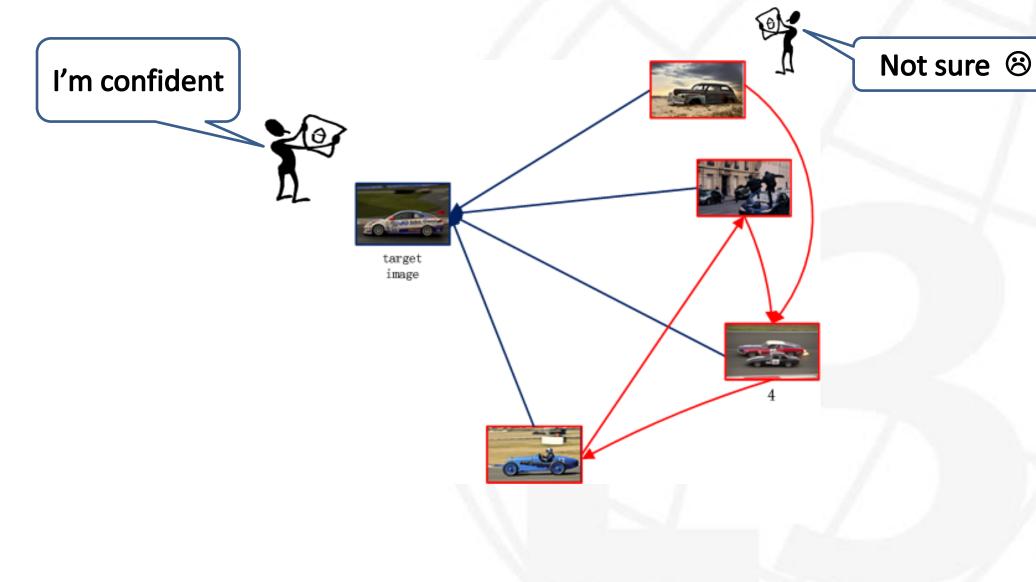
Contribution:

- 1) we exploit the structure information among neighbor images in order to boost the performance.
 - **Voting Graph**: we construct a novel graph for exploiting the structure relationship information.



Contribution :

- 2) We propose a novel model, called Adaptive Teleportation Random Walk, to seamlessly learn tag relevance through the Voting Graph.
 - **Confidence factor:** reflects how confidence of a node to vote its out-link neighbors, which will be modeled into the standard random walk process .

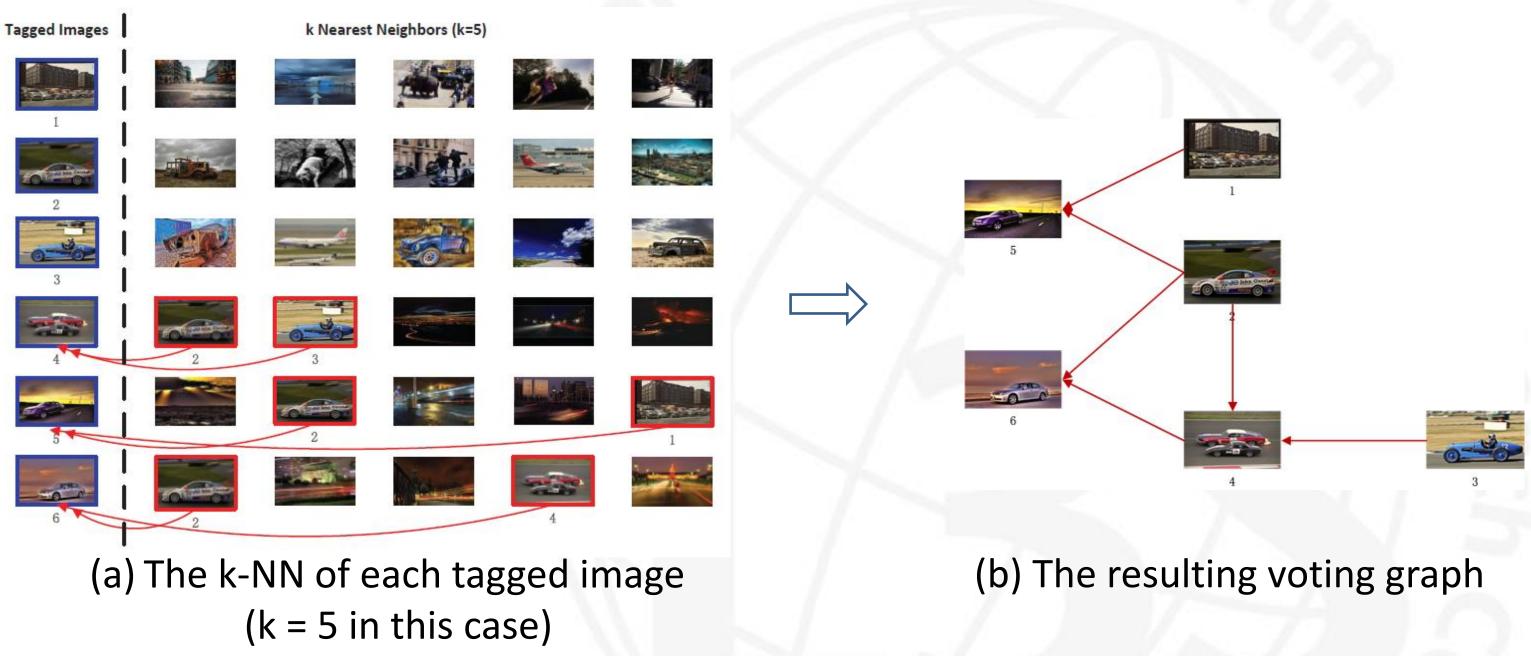


Outline

- Introduction
- Voting Graph
- Adaptive Teleportation Random Walk Model
- Experimental Results
- Conclusion & Future Work

Voting Graph

• **Definition 1**. (*Voting Graph*). A voting graph G = (V, E) is a directed graph where nodes are images in X, i.e., images annotated by a given tag t. There is an edge $e = (i, j) \in E$, if and only if image *i* appears in $N_k(j)$.

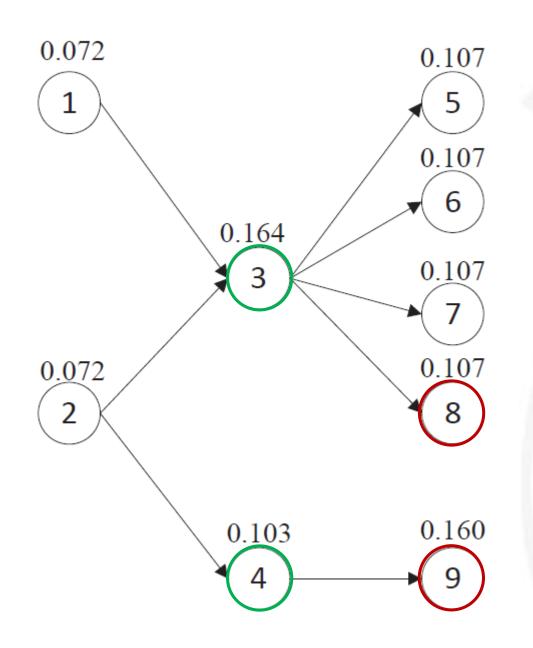


(A solid arrow represents a directed edge from a neighbor image on the right side to the tagged image on the left side.)

Solution via the Voting Graph

- Standard random walk (e.g., PageRank)
 - Succeed in great amount of applications.
 - Use the estimated node importance scores as the tag relevance.
- Question : Is it plausible to run existing random walk (or its variants, like Personalized PageRank)?

Discussion (HOW): standard random walk on voting graph



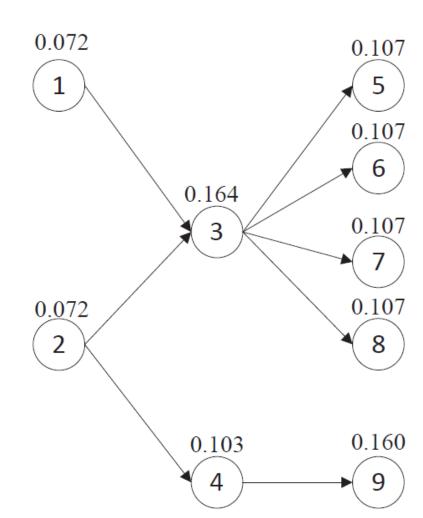
standard random walk model

Intuitively, a good tag relevance learning method should satisfy the following two voting assumptions.

Assumption 1 (authority): The voting impact from a highly relevant nodes should be higher than the voting impact from a *less* relevant voting node.

Assumption 2 (popularity): The voting impact from many voting nodes should usually be higher than the voting impact from *fewer* voting nodes.

Discussion (WHY): standard random walk on voting graph



• Analysis : In the standard random walk (e.g., PageRank), all nodes share the same fixed teleportation probability, determined by the parameter α .

 $r_t = \alpha P^T r$

jump to it neighbors

Example: Node 3 has 4 out-link neighbors, while node 4 only has one out-link neighbor.

Results of standard random walk model

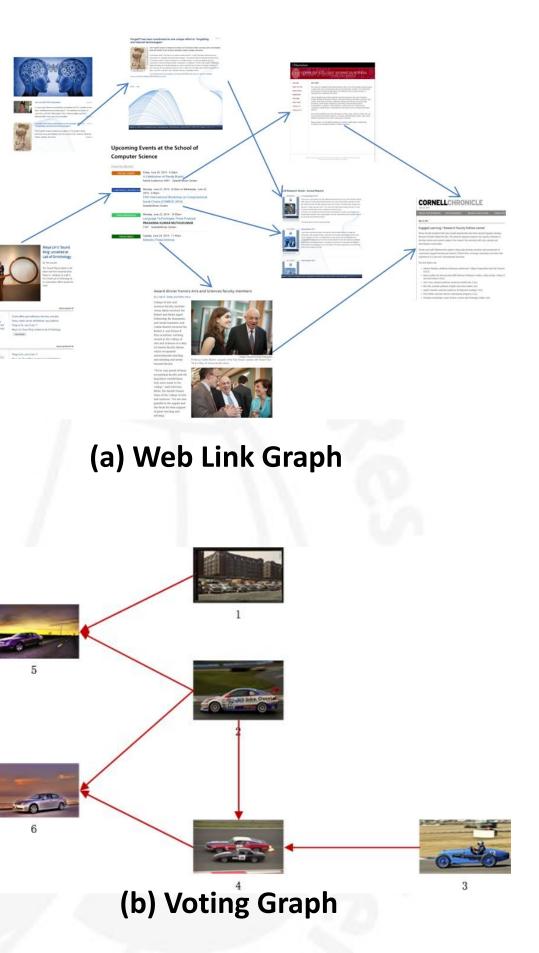
$$r_{t-1} + (1-\alpha)v$$

jump to an arbitrary node

Discussion (WHY): standard random walk on voting graph

Traditional Web Link Graph vs Voting Graph:

- Web link graph (heterogeneous) :
 - > 1) *nodes* of the graph probably come from different concepts.
 - > 2) *links* can be freely added by the content owners.
- Voting Graph (homogeneous) :
 - 1) *nodes* in voting graph are the images annotated by the same concept (i.e., tag), which can be considered as the exemplars of that concept.
 - > 2) *links are* strictly constrained by their visual similarity.

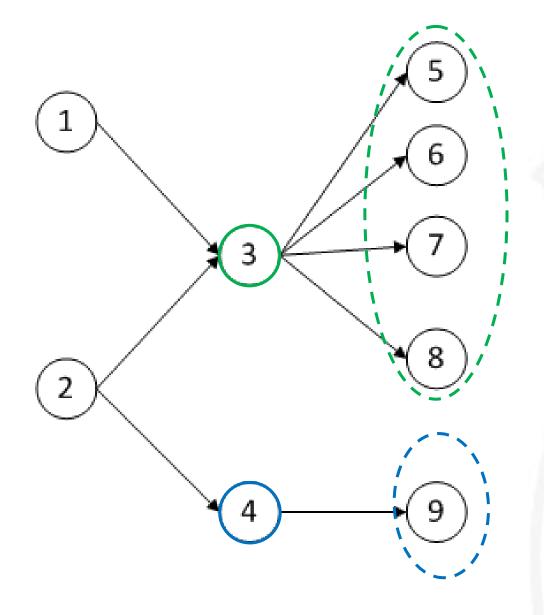


Outline

- Introduction
- Voting Graph
- Adaptive Teleportation Random Walk Model
- Experimental Results
- Conclusion & Future Work

14

Confidence factor



Observation:

- exemplars of the given concept.

Confidence Factor:

It reflects the confidence of a node walks to its our-link neighbors.

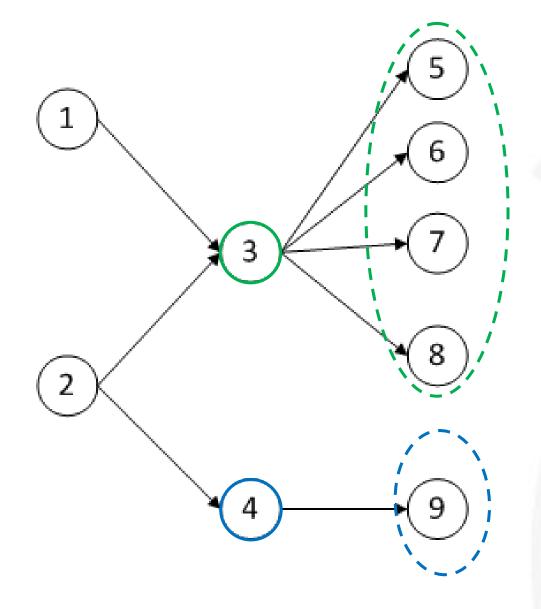
Idea: Nodes with a large number of out-link neighbors will comparably devote larger scores for voting on their out-link neighbors than those nodes with less out-link neighbors.

1) All the images can be considered as the

2) Image with many out-link neighbors should be more relevant to that concept.

 $c_i = \frac{(d_i^+)^{\gamma}}{\max_j (d_i^+)^{\gamma}}$

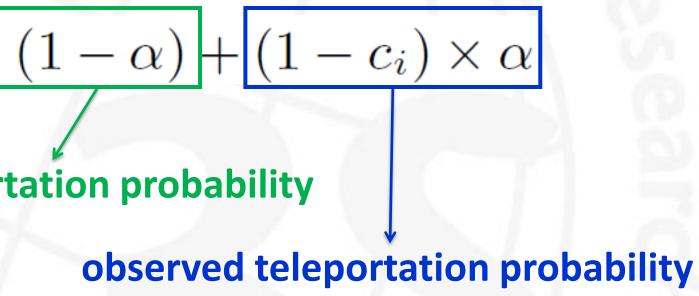
Confidence factor



Teleportation Probability in Our Method :

and the confidence factor c_i

2) Formalized as :



prior teleportation probability

1) It is determined jointly by parameter α

Adaptive Teleportation Random Walk Model

The novel adaptive teleportation random walk process is then formulated as follow:

$$r_t(j) = \alpha \sum_i c_i P_{ij} r_{t-1}(i) + \alpha v_j \sum_i (1 - c_i) r_{t-1}(i) + (1 - \alpha) v_j,$$

Where $p_{ij} = \frac{w_{ij}}{\sum_{k \in N_k(i)} w_{ik}}$ indicates the transition probability

 $_{-1}(i)$

(5)

Adaptive Teleportation Random Walk Model Mathematical Property

THEOREM 2. The iteration of Eq.5 converges to

$$\mathbf{r}_{\pi} = (1 - \alpha)(I - \alpha(\mathbf{P}^{T}\Lambda + \mathbf{v}\mathbf{e}^{T}(I - \Lambda)))^{-1}\mathbf{v}$$

PROOF. Eq.5 can be rewritten in the matrix form

$$\mathbf{r}_{t} = \alpha \mathbf{P}^{T} \Lambda \mathbf{r}_{t-1} + \alpha \mathbf{e}^{T} (I - \Lambda) \mathbf{r}_{t-1} \mathbf{v} + (1 - \alpha) \mathbf{v}$$
(7)

$$= \alpha \mathbf{P}^{T} \Lambda \mathbf{r}_{t-1} + \alpha \mathbf{v} \mathbf{e}^{T} (I - \Lambda) \mathbf{r}_{t-1} + (1 - \alpha) \mathbf{v}$$
(8)

$$= \alpha (\mathbf{P}^T \Lambda + \mathbf{v} \mathbf{e}^T (I - \Lambda)) \mathbf{r}_{t-1} + (1 - \alpha) \mathbf{v}$$
(9)

Let $\mathbf{Q} = \mathbf{P}^T \Lambda + \mathbf{v} \mathbf{e}^T (\mathbf{I} - \Lambda)$, then we have

$$\mathbf{r}_t = \alpha \mathbf{Q} \mathbf{r}_{t-1} + (1 - \alpha) \mathbf{v},\tag{10}$$

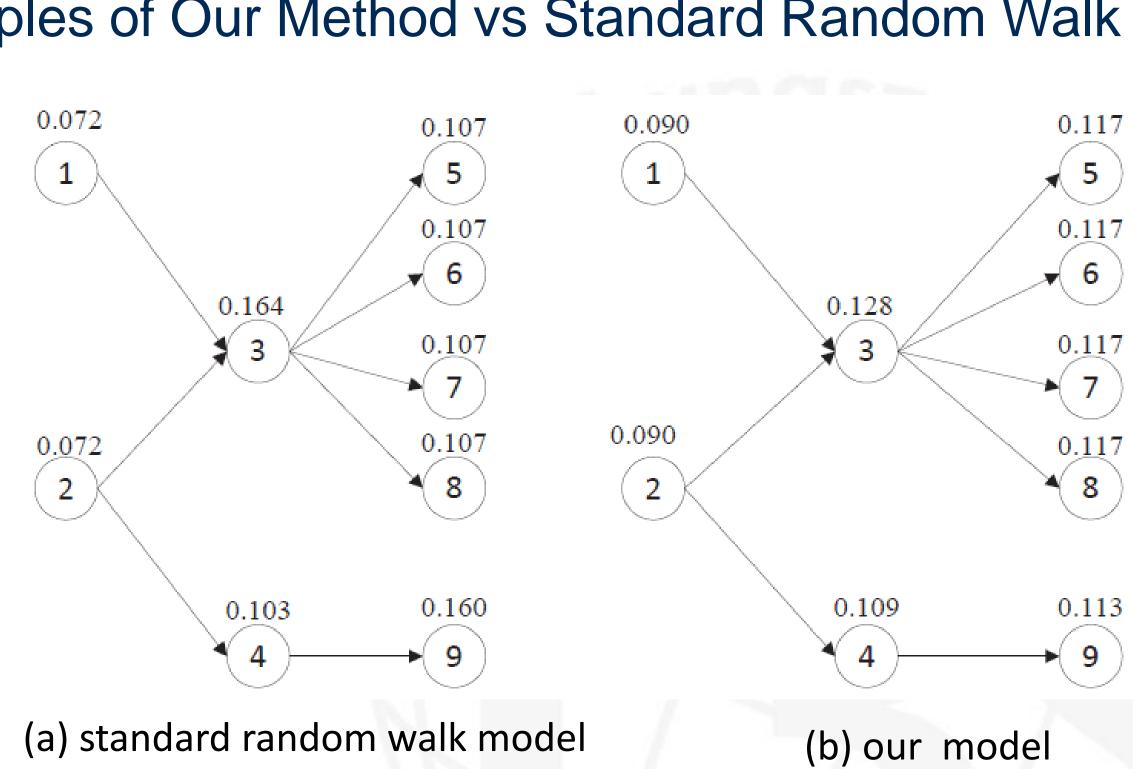
and thus we have

$$\mathbf{r}_{\pi} = \lim_{n \to \infty} (\alpha \mathbf{Q})^n \mathbf{r}_0 + (1 - \alpha) (\sum_{i=1}^n (\alpha \mathbf{Q})^{i-1}) \mathbf{v}$$
(11)

Note that transition matrix P has been row normalized to 1, and v is the probabilistic relevance score (i.e., $\sum_i v_i = 1$). For $0 < \alpha < 1$, there exists $\delta < 1$, such that $\alpha < \delta$, and we can derive that

18

Examples of Our Method vs Standard Random Walk



19

Outline

- Introduction
- Voting Graph
- Adaptive Teleportation Random Walk Model
- Experimental Results
- Conclusion & Future Work

EXPERIMENTS

- Datasets
 - **NUS-WIDE**
 - > 269,648 images
 - > 265-D global features.
 - > 81 concepts are used as the ground-truth.
 - MIR Flickr
 - > 25,000 images
 - > 305-D global features (LIRE)
 - > 17 potential concepts are used as the ground-truth

	,
Statistics	NUS-WIDE
# of images	$269,\!648$
# of unique tags	$425,\!059$
# of unique owners	47,721
avg $\#$ of tags per image	19.31
avg # of owner's tagged images	5.03

MIR Flickr 25,00080,997 9,862 8.94 2.53

Evaluation Metrics

- Precision@K
 - > measures the ranking quality of the top results
- MAP
 - > measures the ranking quality of the entire list
- **Baseline Methods**
 - Neighbor Voting (NV)
 - Weighted Neighbor Voting (NV-W)
 - Random Walk(RW)
 - Weighted Random Walk (RW-W).

Comparisons with Other Methods

The evaluation results on both NUS-WIDE and MIR Flickr datasets

			-		
Method	NUS-WIDE		MIR Fli		
	nou	MAP	P@100	MAP	P@
NV		0.3766	0.7406	0.2918	0.8
NV-	W	0.3778	0.7480	0.2921	0.8
RW		0.3526	0.6336	0.2869	0.8
RW	-W	0.3531	0.6359	0.2871	0.8
GV		$0.3788 \ddagger \ddagger$	0.7453 †	0.2921	0.8
GV-	W	<u>0.3790</u> † ‡	<u>0.7501</u> † ‡	0.2923	0.8

The † (‡) indicates statistical significance at p-value<0.05 using the Student's t-test with regard to the baseline NV (NV-W).

ickr @100 8906 8935 .8571 8559 8918 8965 ‡

Analysis on different categories

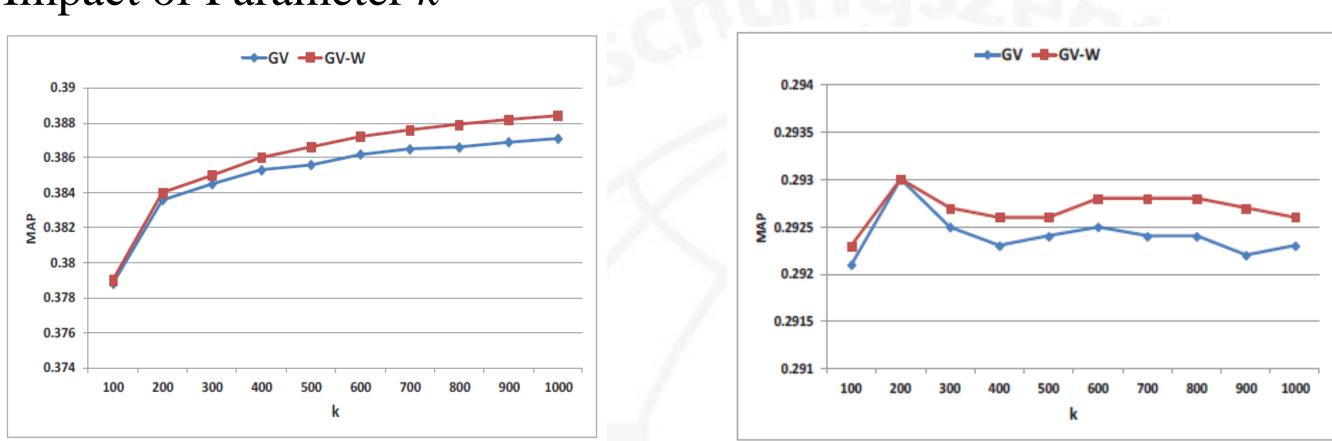
Table 3: Group Analysis on NUS-WIDE based on the metric MAP. The underline indicates the best performance.

Category	NV	NV-W	RV	RV-W	GV	GV-W
Events	0.332	0.333	0.285	0.286	0.337	0.335
Scene	0.344	0.347	0.317	0.317	0.345	0.347
People	0.391	0.394	0.376	0.377	0.395	0.396
Objects	0.438	0.438	0.403	0.403	0.440	0.439

6 categories: events (e.g., dancing), scene (e.g., sky), people (e.g., police), objects(e.g., horses), program (e.g., sports), and graphics(e.g., map).

Impact of Parameters

Impact of Parameter k

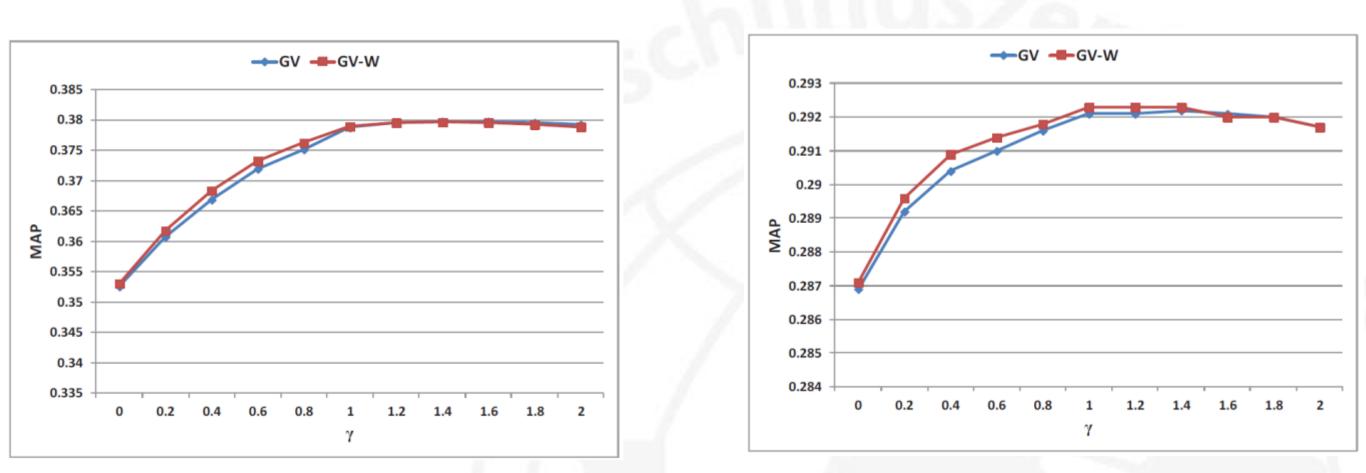


NUS-WIDE

• k represents the number of nearest neighbors considered and controls the density of the voting graph.

MIR Flickr

Impact of Parameter γ



NUS-WIDE

MIR Flickr

• γ controls how the number of out-link neighbors affects the confidence value. linearly proportional to the number of its out-link neighbors. 1.0 : $\gamma = \begin{cases} 0.0: \text{ regress to the standard random walk model.} \\ +\infty: \text{ nodes with less number of out-link neighbors will be omitted.} \end{cases}$

Impact of Parameter α and σ

- α controls the prior teleportation probability.
 - our methods are not very sensitive to as compared with the case of standard random walk based methods.
- σ affects the sensitivity of the similarity measure
 - when σ is *small*, neighbor images which are *very close* to the target image will have a *larger similarity*.
 - when σ is *large*, all neighbor images will tend to have *similar voting* powers.
 - optimal value: the average distance of all images.

Outline

- Introduction
- Voting Graph
- Adaptive Teleportation Random Walk Model
- Experimental Results
- Conclusion & Future Work

28

CONCLUSIONS

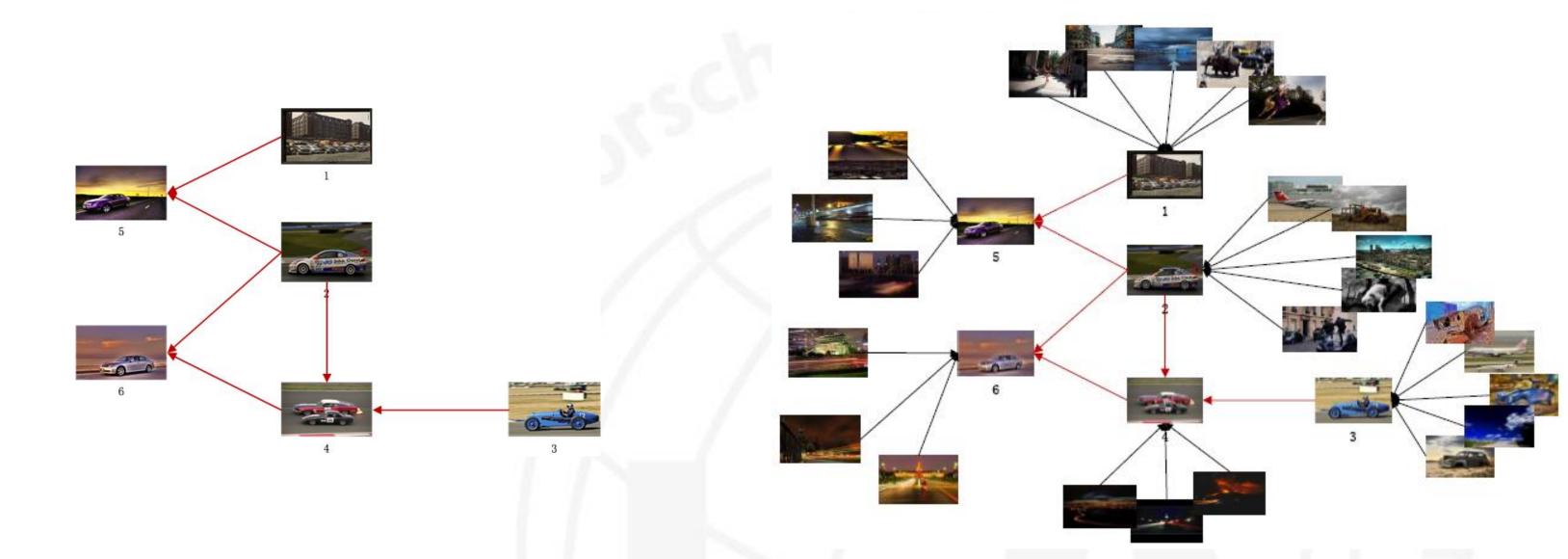
- We propose the Voting Graph to exploiting the relationships among visual neighbors.
 - structured (graph) voting, rather than flat voting.
- We presented a novel framework, called **Adaptive Teleportation Random Walk Model**, to seamlessly integrate confidence factor the into to random walk process.
- Theoretically analyze the **Mathematical Property**:
 - prove that the proposed model can converge to a stationary distribution
 - give its closed-form solution

Future work

- Apply the proposed method in other applications, such as web search, query recommendation.
- Reduce the incorrect relationships in the graph (semantic information)

THANKS & QUESTION?

Voting Graph vs k-NN Graph

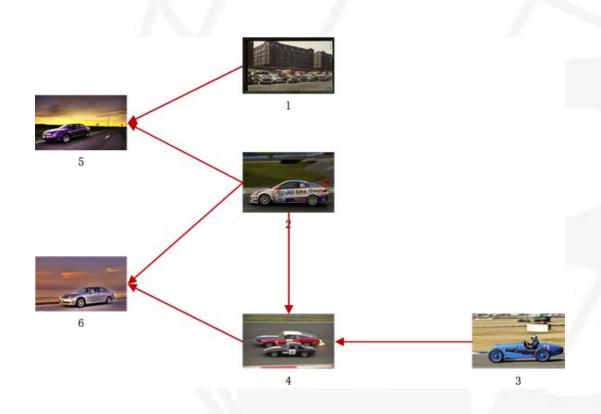


(b) The resulting voting graph

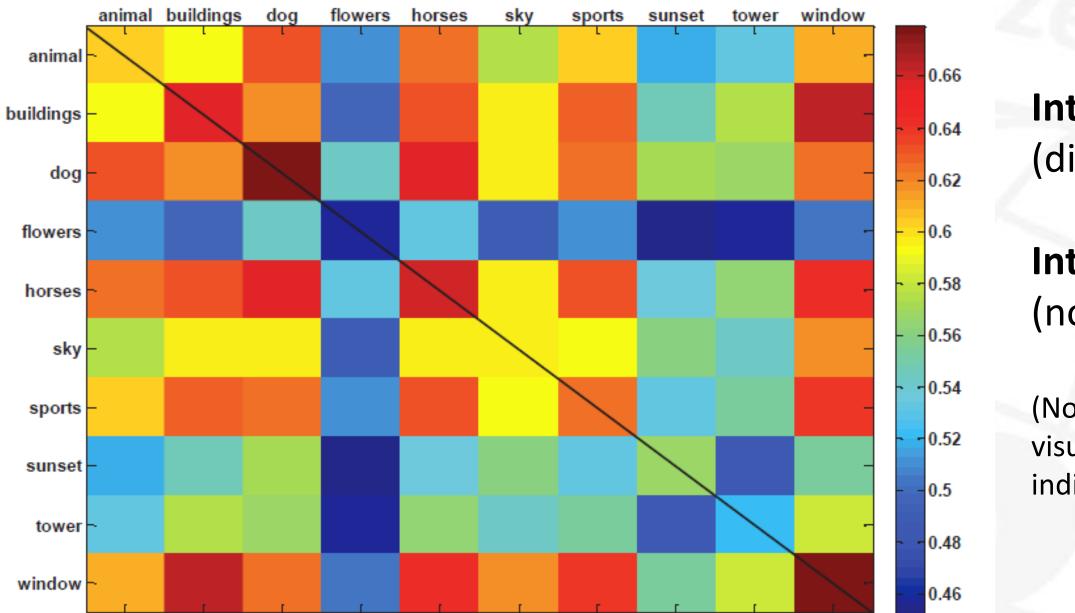
(c) The resulting k-NN graph

Interpretation of Existing Approaches via Voting Graph

- Use the in-degree of each node *i* (i.e., d_i^+)
 - equivalent to standard *Neighbor Voting*.
- Further take into account the weight of the edges equivalent to the Weighted Neighbor Voting algorithm



An illustration of the limitations of neighbor voting methods.



(e.g., the intra-class similarity of the concept `flower' is much smaller than its corresponding **inter-class similarity** with the concept 'horse') 33

Intra-Class Similarity (diagonal blocks)

Inter-Class Similarity (non-diagonal blocks)

(Note: Warmer colors indicate higher visual similarities, Colder colors indicate *lower* visual similarities)