

# **History by Diversity**

# Jaspreet Singh, Avishek Anand & Wolfgang Nejdl (singh,anand,nejdl @<u>I3s.de</u>)



# **Exploring News Archives**



# singh@l3s.de



# Why can't it be like Google?



# singh@l3s.de



- Precise
- Diverse
- Driven by popularity

What is the intent of a user when using



# **Historical Search on News Archives**

# I want to know the history of ..... Rudolph Giuliani



- Newspaper articles encode history as it happens.
- Aspects are diverse across time.
- Time windows can be diverse in aspects.



# **History by Diversity**

- <u>Historical Search task</u>: I want documents covering the most  $\bullet$ important aspects when they were important for a given topic.
- I want documents from the **most important aspects and from the**  $\bullet$ most important time windows. (New Retrieval Task)
- History by Diversity Extending the standard diversity problem to  $\bullet$ include time

$$P(S|q) = \sum_{c} P(c|q)(1 - \prod_{d \in S} (1 - V))$$

(d|q,c,))



# How do you evaluate historical search?

- To measure coverage of important time windows and aspects we  $\bullet$ introduce a new information space:
- Aspect-Time space encodes which aspects are relevant and when.

SBR@k = 
$$\left| \bigcup_{d_p \in \mathcal{R}_q^k} \{ (a_i, \delta_j) \mid a_i \in A(a_i) \right| \right|$$

- Adapt standard diversity metrics like intent aware precision, subtopic  $\bullet$ recall, NDCG, etc to function on this space.
- A document is relevant only if it is relevant to an aspect and is also published in its corresponding time period.

# $d_p) \wedge \Lambda(p) = \delta_j \} \Big|$



# **Test Collection for Historical Search**

- TREC datasets are short time spans; the topics and subtopics are  $\bullet$ not suited for historical search.
- We created our own test collection using the New York Times 20 year annotated dataset.
- Manually created topics and subtopics using relevant wikipedia  $\bullet$ history sections.
- Expert binary relevance judgements for 30 topics.

7



```
<topic>
<query>rudolph giuliani</query>
<desc>I want to know the history of Rudolph Giuliani</desc>
<subtopics>
 <subtopic>
  <desc>Mayoral campaigns</desc>
   <time>[{01.01.1989 - 31.12.1989}, {01.01.1993 - 31.12.1993}, {01.01.97 - 31.12.1997}]</time>
 </subtopic>
 <subtopic>
  <desc>Senate race</desc>
  <time>[{01.01.2000 - 31.12.2000}]//time>
 </subtopic>
 <subtopic>
  <desc>Efforts after 9/11</desc>
  <time>[{11.09.2001 - 01.04.2002}]</time>
  </subtopic>
</subtopics>
</topic>
```



# Why not use standard diversification algorithms?

- Diversify just aspects: no guarantee we will get temporal diversity.
- Diversify just time: no guarantee we will get aspect diversity.
- **Aspect Diversity** Aspect utility is updated using a discounting function.
- **Temporal Diversity** considers aspects of a topic as time windows.
- Discounting time using exponential decay

Jaspreet Singh



# The HistDiv Approach



- Aspects are temporal in nature lacksquare
- Time windows are diverse themselves lacksquare
- **Compute utility and discount accordingly**





# Mayoral Campaign

# Mayorality



# **HistDiv**





# The HistDiv Algorithm

- Extend the multi-dimension diversification algorithm  ${\color{black}\bullet}$
- 2 dimensions: Time and Aspects lacksquare

$$g(d|q, S) \leftarrow \alpha.V(d|q) + (1 - \alpha).(\beta.\sum_{c}^{A(d)} U_{aspe})$$

$$\int$$
Time Decay based discounting

Dimension are **interdependent**  ${\color{black}\bullet}$ 

# $ect + (1 - \beta).U_{time}$ Coverage based discounting



# Mayoral Campaign

Mayorality

# **Discounting window width** (w) set dynamically using

Mayoral Campaign

Mayorality



**D2** 



Mayoralty

Mayoral Campaign

Mayoral Campaign

Mayoralty

Jaspreet Singh



# **Experiments**

- New York Times Test Collection lacksquare
- Metrics: Time Aware NDCG, ERR, Subtopic Recall, Precision, MAP  ${\color{black}\bullet}$ & TIA-SBR
- Window size: year & month
- Aspects mined from AIDA & wikiminer
- Tuned for best performance in subtopic recall.  $\bullet$

**Jaspreet Singh** 



# **Competitors**

- Competitors Time diversification, Aspect Diversification, Adapted  ${\color{black}\bullet}$ aspect diversification & Multi Dimension Diversification
- We strengthen the following competitors by linearizing aspects and  ${\color{black}\bullet}$ time
  - **IA-SELECT**
  - PM2

Other competitors: Non temporal IA-SELECT & PM2, MDIV, OnlyTime

Baseline: Language Model with dirichlet smoothing



# **Results**

|                              | k=10   |       |                                  |        | k=15        |                                   |                           | k=20  |                                   |  |
|------------------------------|--------|-------|----------------------------------|--------|-------------|-----------------------------------|---------------------------|-------|-----------------------------------|--|
|                              | A      | T     | $AT \left( W/L\% \right)$        | A      | T           | AT(W/L%)                          | A                         | T     | $AT\left(W/L\% ight)$             |  |
| Ги                           | 0.706  | 0.060 | 0.428                            | 0.752  | 0.085       | 0.491                             | 0.780                     | 0.091 | 0.518                             |  |
| IA-SELECT <sup>°</sup>       | 0.722  | 0.039 | 0.442 (23/23)                    | 0.766  | 0.047       | 0.491 (20/26)                     | 0.841                     | 0.055 | 0.516 (20/23)                     |  |
| Рм2*                         | 0.707  | 0.069 | 0.429 (16/20)                    | 0.794  | 0.082       | 0.471 (10/23)                     | 0.817                     | 0.097 | 0.509 (16/26)                     |  |
| TIA-SELECT <sup>•</sup>      | 0.614  | 0.039 | 0.380(23/36)                     | 0.717  | 0.047       | 0.433 (20/43)                     | 0.770                     | 0.055 | 0.470 (20/26)                     |  |
| т-рм2′                       | 0.551  | 0.088 | 0.308 (13/50)                    | 0.680  | 0.106       | 0.408(20/43)                      | 0.761                     | 0.128 | 0.453 (16/33)                     |  |
| E-IA-SELECT <sup>‡</sup>     | 0.700  | 0.062 | 0.435 (23/23)                    | 0.776  | 0.084       | 0.501 (23/23)                     | 0.837                     | 0.095 | 0.524 (23/20)                     |  |
| $E-PM2^{\dagger}$            | 0.692  | 0.061 | 0.422 (6/16)                     | 0.766  | 0.083       | 0.469 (6/26)                      | 0.816                     | 0.098 | 0.495 (10/26)                     |  |
| EQT                          | 0.714  | 0.076 | 0.440 (16/13)                    | 0.766  | 0.097       | 0.503 (13/6)                      | 0.802                     | 0.117 | 0.542 (20/6)                      |  |
| MDIV <sup>▲</sup>            | 0.720  | 0.060 | 0.460 (33/33)                    | 0.764  | 0.079       | 0.515 (23/16)                     | 0.823                     | 0.096 | 0.552 (29/3)                      |  |
| <b>OnlyTime</b> <sup>°</sup> | 0.729  | 0.068 | 0.426 (20/26)                    | 0.807  | 0.092       | 0.497 (26/26)                     | 0.826                     | 0.115 | 0.534 (26/20)                     |  |
| HISTDIV                      | 0.761° | 0.07  | 0.497* (40/13)                   | 0.814  | 0.085       | 0.542 <sup>4</sup> (36/26)        | <b>0.864</b> <sup>‡</sup> | 0.101 | 0.583*(43/13)                     |  |
| HISTDIV-BURST                | 0.777° | 0.087 | <b>0.509</b> <sup>▲</sup> (33/6) | 0.830° | $0.113^{'}$ | <b>0.560</b> <sup>▲</sup> (46/20) | 0.860 <sup>‡</sup>        | 0.132 | <b>0.601</b> <sup>▲</sup> (43/16) |  |
| HISTDIV-NER                  | 0.741  | 0.110 | 0.467                            |        |             |                                   | 0.862                     | 0.104 | 0.588                             |  |
| HISTDIV-BURST-NER            | 0.761  | 0.137 | 0.483                            |        |             |                                   | 0.840                     | 0.140 | 0.561                             |  |
| NYT                          | 0.473  | 0.046 | 0.288                            | 0.552  | 0.057       | 0.329                             | 0.578                     | 0.062 | 0.346                             |  |
| GOOGLE                       | 0.564  | 0.068 | 0.312                            | 0.621  | 0.077       | 0.353                             | 0.663                     | 0.085 | 0.402                             |  |

TIA-SBR (Win/Loss)



|                               | IAP                       |                           | SBR    |                | NDCG                      |                | IA-ERR |        | MAP    |       |
|-------------------------------|---------------------------|---------------------------|--------|----------------|---------------------------|----------------|--------|--------|--------|-------|
|                               | М                         | Y                         | Μ      | Y              | М                         | Y              | Μ      | Y      | М      | Y     |
| LM                            | 0.099                     | 0.099                     | 0.428  | 0.428          | 0.402                     | 0.402          | 0.201  | 0.201  | 0.228  | 0.228 |
| IA-SELECT <sup>o</sup>        | 0.101                     | 0.101                     | 0.442  | 0.442          | 0.415                     | 0.415          | 0.180  | 0.180  | 0.215  | 0.215 |
| Рм2*                          | 0.100                     | 0.100                     | 0.429  | 0.429          | 0.388                     | 0.388          | 0.213  | 0.213  | 0.241  | 0.241 |
| TIA-SELECT•                   | <b>0.120</b> <sup>▲</sup> | <b>0.113</b> <sup>‡</sup> | 0.380  | 0.361          | <b>0.497</b> <sup>‡</sup> | <b>0.468</b> ° | 0.195  | 0.179  | 0.242  | 0.232 |
| Т-Рм2′                        | 0.064                     | 0.091                     | 0.308  | 0.410          | 0.232                     | 0.368          | 0.123  | 0.176  | 0.152  | 0.167 |
| $E-IA-SELECT^{\ddagger}$      | 0.106                     | 0.102                     | 0.435  | 0.430          | 0.478                     | 0.412          | 0.183  | 0.177  | 0.219  | 0.214 |
| $E-PM2^{\dagger}$             | 0.103                     | 0.099                     | 0.422  | 0.417          | 0.419                     | 0.379          | 0.217  | 0.204  | 0.227  | 0.239 |
| EQT                           | 0.096                     | 0.078                     | 0.441  | 0.426          | 0.360                     | 0.331          | 0.203  | 0.200  | 0.229  | 0.213 |
| MDIV <sup>▲</sup>             | 0.109                     | 0.096                     | 0.460  | 0.428          | 0.389                     | 0.370          | 0.204  | 0.203  | 0.236  | 0.236 |
| <b>OnlyTime</b> <sup>\$</sup> | 0.089                     | 0.076                     | 0.426  | 0.415          | 0.354                     | 0.297          | 0.196  | 0.189  | 0.236  | 0.220 |
| HISTDIV                       | 0.096                     | 0.087                     | 0.497▲ | 0.459°         | 0.383                     | 0.339          | 0.229* | 0.208  | 0.255• | 0.231 |
| HISTDIV-BURST                 | 0.096                     | 0.096                     | 0.509* | <b>0.509</b> ° | 0.375                     | 0.375          | 0.231* | 0.231* | 0.244  | 0.244 |
| HISTDIV-NER                   | 0.097                     | -                         | 0.464  | -              | 0.391                     | -              | 0.213  | -      | 0.245  | -     |
| HISTDIV-BURST-NER             | 0.091                     | -                         | 0.483  | -              | 0.358                     | -              | 0.210  | -      | 0.225  | -     |
| NYT                           | 0.055                     | -                         | 0.288  | -              | 0.206                     | -              | 0.126  | -      | 0.154  | -     |
| GOOGLE                        | 0.059                     | -                         | 0.312  | -              | 0.216                     | -              | 0.147  | -      | 0.225  | -     |



# Conclusion

- ✓ Historical Query Intents, test collection to evaluate retrieval models for HQIs and a new metric TIA-SBR.
- ✓ HistDiv Algorithm special semantics to discount time and aspects
- Outperform competitors in most measures.  $\checkmark$
- ✓ Aspects and time are interlocked
- Robust temporal references alone are also effective as well as simple NER
- ✓ Recall at the cost of precision
- Good starting point for further exploration of a news archive



# Demo

# http://pharos.l3s.uni-hannover.de:7080/ArchiveSearch/starterkit/