Building and Querying Semantic Layers for Web Archives

<u>Pavlos Fafalios</u>, Vaibhav Kasturia, Helge Holzmann, Wolfgang Nejdl *fafalios@I3s.de*

L3S Research Center, University of Hannover, Germany

Web Archives

- Valuable sources for research in many disciplines
- Comprehensive documentation of society
- + News Archives and Social Media Archives (non-versioned)
- Accessing Web Archives
 - Limited query and exploration capabilities
 - Difficult to integrate information and identify interesting parts
 - Laborious to derive interesting (aggregated) information
- Analysts want to see, compare and understand information about entities
 - Thus, calling for entity-centric exploration and analysis methods!

The 6 Motivating Questions

1 - Information exploration

- How to explore web archives in a more advanced and exploratory way?
- Find documents of a specific time period, discussing about a specific category of entities, or about entities sharing some characteristics

2 - Information integration

- How to explore web archives by also integrating information from existing knowledge bases like DBpedia?
- How to integrate information coming form multiple (web) archives?

The 6 Motivating Questions

- 3 Information/Knowledge discovery
 - How to infer knowledge by exploiting the contents of a Web Archive?
 - Identify important time periods related to one or more entities
 - Find out popular entities of a specific type in specific time periods
- 4 Robustness in information change
 - How to explore web archives by automatically taking into account the change of entities over time?
 - Find documents without worrying about their correct reference

The 6 Motivating Questions

- 5 Multilinguality
 - How to explore documents about entities independently of the document language (and thus of the language of the entity mentions)?
- 6 Interoperability
 - How to facilitate exploration of web archives by other systems and tools?
 - Expose information about web archives in the Web, in a standard and machine understandable format
 - Identify interesting parts for further analysis, easily and fast

Existing Approaches

• Exploring Web Archives

- Search services provided by Internet Archive (Wayback Machine), Memento (Time Travel), Archive-It, Portuguese Web Archive
- Research works: [Holzmann and Anand, 2016], [Kanhabua et al., 2016], [Vo et al., 2016], [Jackson et al., 2016], [Singh et al., 2016]

• **Profiling** Web Archives

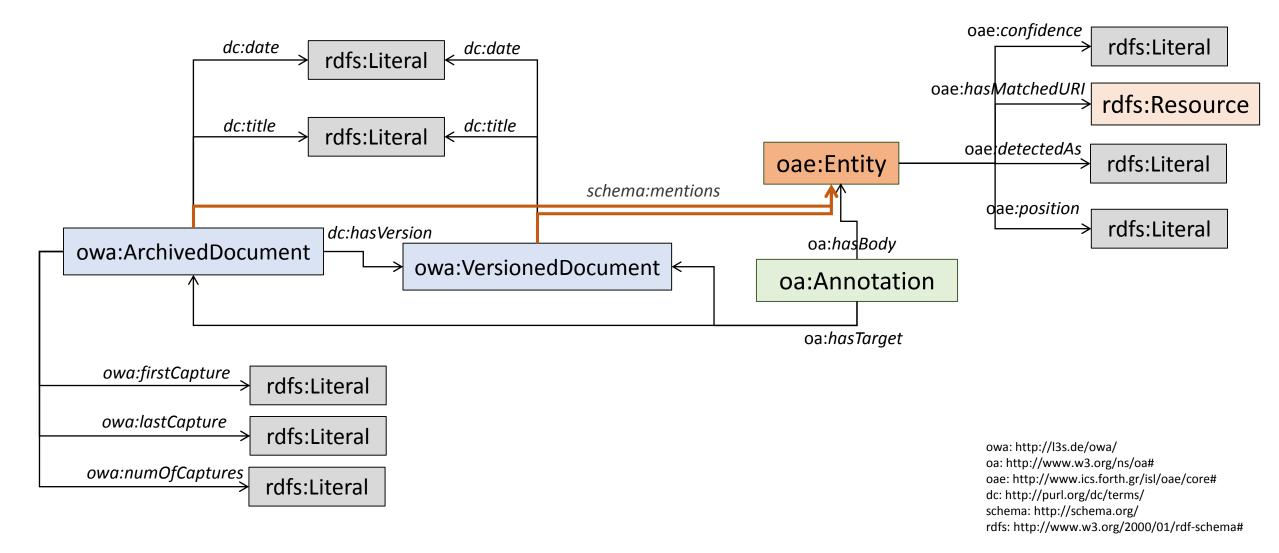
• Improve effectiveness of query routing strategies in distributed archive search [AlSum et al., 2014], [Alam et al., 2015], [Bornand et al., 2016], [Alam et al., 2016]

• Analyzing Web Archives

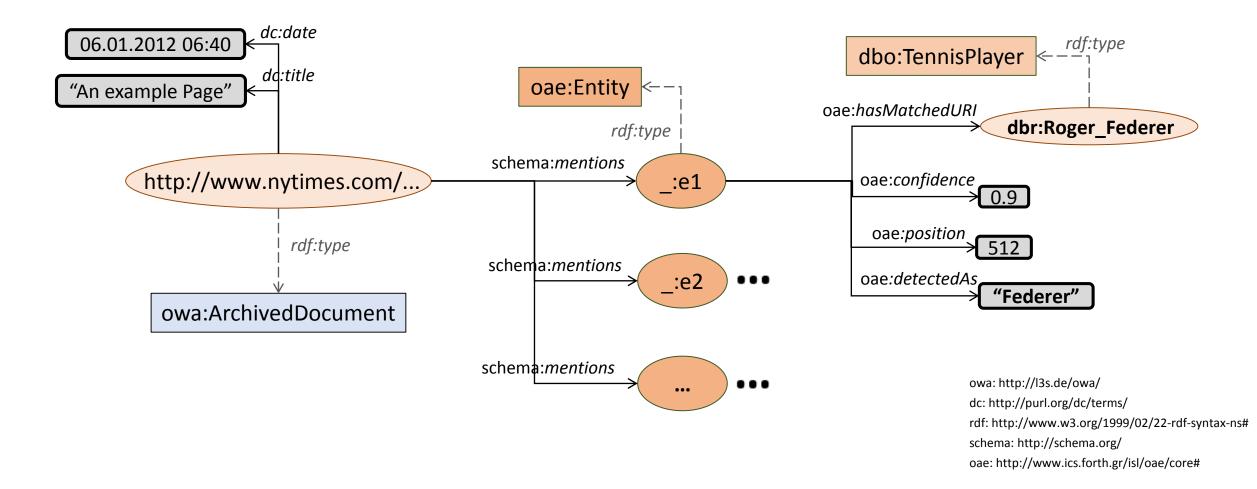
- Frameworks for distributed analysis of Web Archives
- ArchiveSpark [Holzmann et al., 2016], Warcbase [Lin et al., 2014]

Our approach: building and querying Semantic Layers

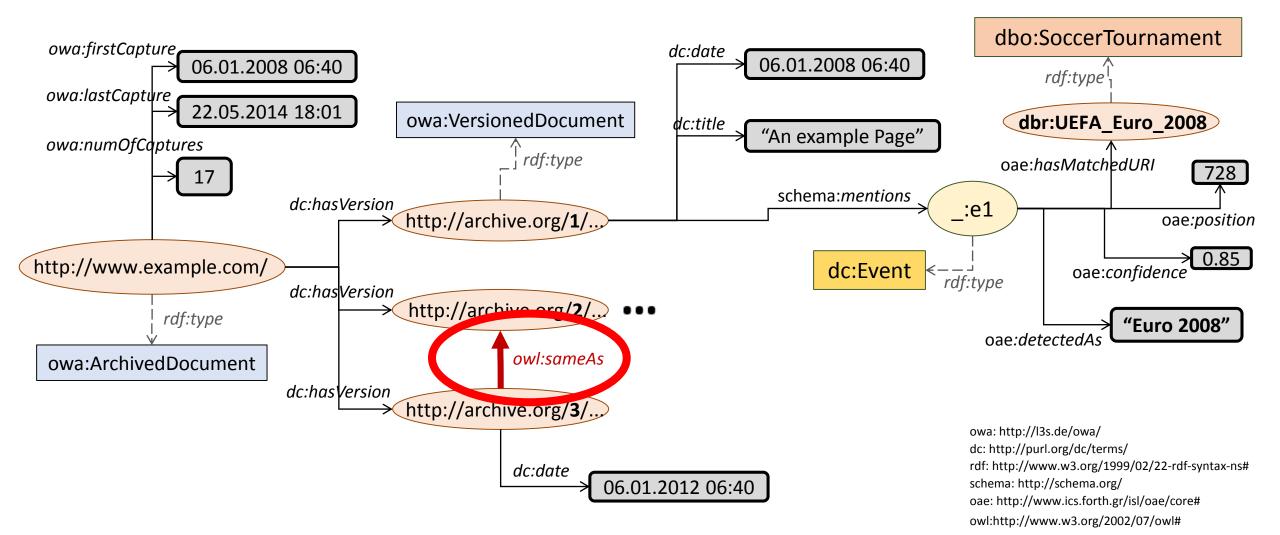
for **profiling** and **exploring** web archives


- Semantic Layer:
 - An RDF repository (RDF graph) of structured data (triples) about an archived collection of documents
- It allows:
 - Describing useful **metadata** information about the archived documents
 - Annotating the documents with semantic information, like entities, events and concepts mentioned in the documents
 - **Publishing** all this data on the Web (as Linked Data or though a SPARQL endpoint)
- Why?
 - Advanced, entity-centric query capabilities (using SPARQL)
 - Real-time data integration
 - Directly accessible and exploitable by other systems and tools

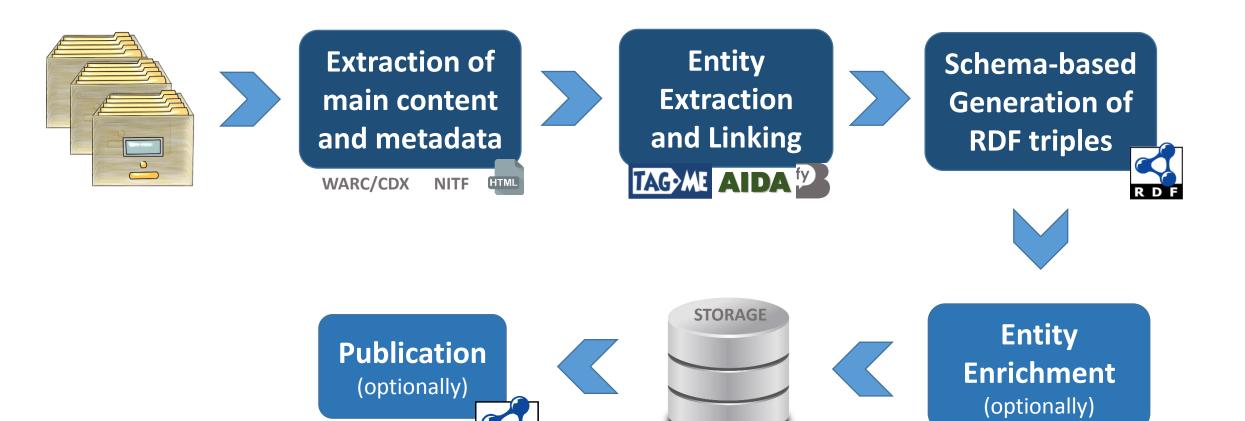
Outline of next slides


- <u>Building</u> Semantic Layers
 - RDF/S data model: "Open Web Archive"
 - Construction **process**
 - Open source framework: "ArchiveSpark2Triples"
- **Querying Semantic Layers**
 - Case Studies and Query Capabilities
 - Evaluation
 - Problems and Limitations
- <u>Ranking</u> in Semantic Layers
 - How to rank the results returned by a SPARQL query?
 - Baseline Probabilistic Modeling
- Conclusion and Future Work

Building Semantic Layers


RDF/S data model: **Open Web Archive** http://l3s.de/owa/

Open Web Archive – Example of <u>Non-versioned</u> Web Page


Open Web Archive – Example of <u>Versioned</u> Web Page

The construction process

Linked Open Data

SPARO

Freebase

Apache Spark framework: ArchiveSpark2Triples

https://github.com/helgeho/ArchiveSpark2Triples

- Based on ArchiveSpark framework https://github.com/helgeho/ArchiveSpark
 - Programming framework for efficiently analyzing large web archives
 - Unified data model storing records in an hierarchical way
 - Very fast filtering, grouping and sorting based on metadata
 - Support of external modules, called enrich functions

ArchiveSpark2Triples

- Extension that automates the construction of a semantic layer
- Output: Notation3 (N3) files
- Customizable assignment of URLs and vocabularies to use \rightarrow Extendable!
- Extraction of entities using Yahoo FEL entity linking tool
 - Enrich function available under **FEL4ArchiveSpark** https://github.com/helgeho/FEL4ArchiveSpark

Apache Spark framework: ArchiveSpark2Triples

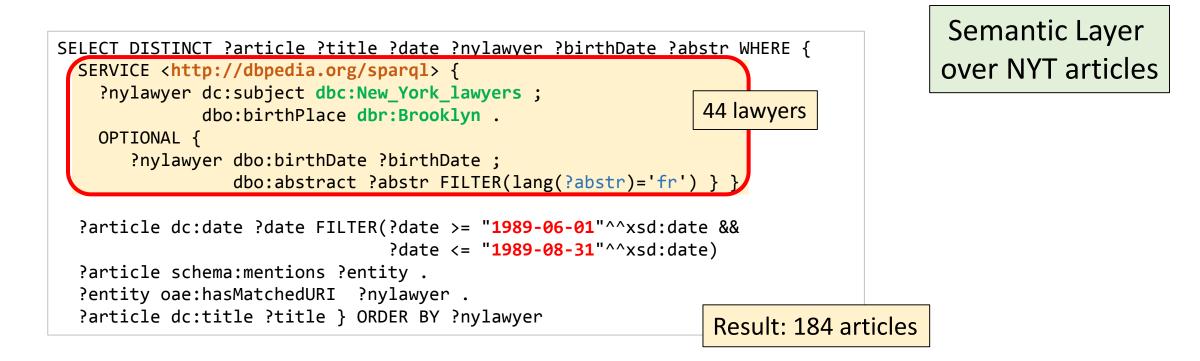
https://github.com/helgeho/ArchiveSpark2Triples

• Efficiency

- Very efficient for operations that only rely on metadata information (in CDX files)
- Actual contents are accessed only for applying enrich functions to the versioned documents that do <u>not</u> constitute duplicates of older versions
- Entity extraction is the most expensive task
- Actual time for the entire workflow depends on:
 - Dataset size and nature of data
 - Computing infrastructure and available resources
 - <u>Indicatively</u>: 24 hours for creating a semantic layer for a web archive of 9 million web pages (474.6 GB of compressed WARC and CDX files)
 - Hadoop cluster of 25 compute nodes, 268 CPU cores, 2,688 GB RAM, 110 executors in parallel most of the time

Querying Semantic Layers

Case Studies


- Web Archive (versioned)
 - Occupy Movement 2011/2012 collection (provided by Archive-It)
 - >9M captures of >3M URLs
 - URIs for versions: links to the collection's Wayback Machine provided by ArchiveIt
 - >10B triples; >1.3M same-as properties; 939,960 distinct entities
- News Archive (non-versioned)
 - New York Times Annotated Corpus
 - \approx 1.5M articles published by NYT between 1987 and 2007
 - >195M triples; 856,283 distinct entities

Social Media Archive

- ≈ 1.4M tweets posted in 2016 by 469 twitter accounts of USA newspapers
- Metadata: creation date, username, favorite count, retweet count
- >19 million triples; 146,854 distinct entities

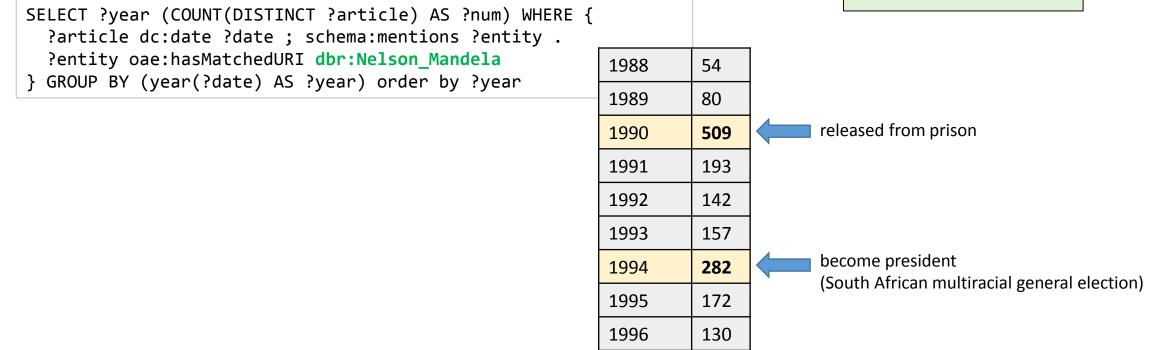
Available at: http://l3s.de/owa/semanticlayers/

- Information Exploration and Integration
 - Articles of summer 1989 mentioning New York lawyers born in Brooklyn (and for each lawyer show its birth date and a description in French)

- Information Exploration and Integration
 - Popular tweets (with >50 re-tweets) posted during the summer of 2016, mentioning basketball players of the NBA team Los Angeles Lakers
 Semantic Layer

	over tweets collection
SELECT DISTINCT ?tweet ?count ?date ?entityUri WHERE {	over tweets collection
SERVICE <http: dbpedia.org="" sparql=""> { / players</http:>	
<pre>?entityUri dc:subject dbc:Los_Angeles_Lakers_players }</pre>	
<pre>?t a tw:Tweet ; dc:date ?date FILTER(?date>="2016-06-01"^^xsd:dateTime &&</pre>	
?date<="2016-08-31"^^xsd:dateTime)	
?t tw:retweetCount ?count FILTER (<mark>?count > 50</mark>) .	
<pre>?t schema:text ?tweet ; schema:mentions ?entity .</pre>	
<pre>?entity oae:hasMatchedURI ?entityUri }</pre>	
Result: 14	<mark>l tweets</mark>

- Information/Knowledge Discovery
 - Most discussed journalists in Occupy Movement collection


```
SELECT ?journ (COUNT(DISTINCT ?page) AS ?num) WHERE {
   SERVICE <http://dbpedia.org/sparql> {
        ?journ a yago:Journalist110224578 }
        ?page a owa:ArchivedDocument ; dc:hasVersion ?version .
        ?version schema:mentions ?entity .
        ?entity oae:hasMatchedURI ?journ
} GROUP BY ?journ ORDER BY DESC(?num)
        • Ralph Nader
        • Chris Hedges
```

Semantic Layer over Occupy Movement

• Dylan Ratigan

- Information/Knowledge Discovery
 - Number of articles per year mentioning Nelson Mandela

Semantic Layer over NYT articles

- Information/Knowledge Discovery
 - Most discussed Drugs in 1987 (left) and 1997 (right)

Semantic Layer over NYT articles

SELECT DISTINCT ?drug (count(DISTINCT ?article) as ?numOfArticles) WHERE {
 SERVICE <http://dbpedia.org/sparql> { ?drug a dbo:Drug }
 ?article dc:date ?date FILTER(year(?date) = "1987") .
 ?article schema:mentions ?entity . ?entity oae:hasMatchedURI ?drug .
} GROUP BY ?drug ORDER BY DESC(?numOfArticles)

Drug	Num of articles (1987)		Drug	Num of articles (1997)
http://dbpedia.org/resource/Cocaine	778		http://dbpedia.org/resource/Cocaine	462
http://dbpedia.org/resource/Heroin	248		http://dbpedia.org/resource/Heroin	275
http://dbpedia.org/resource/Aspirin	63		http://dbpedia.org/resource/Nicotine	125
http://dbpedia.org/resource/Zidovudine	53		http://dbpedia.org/resource/Fluoxetine	61
http://dbpedia.org/resource/Furosemide	53	sho	http://dbpedia.org/resource/Caffeine	58

- Robustness and Multilinguality
 - Extracted entities are assigned unique URIs
 - Different mentions of an entity are assigned the same unique URI (multilingual name variants)
 - For multilinguality, the entity linking system should support the identification of entities in different languages
 - Time-awareness and correct disambiguation of the entity linking system affect the results!

- Other exploitation scenarios
 - Time-Aware Entity Recommendation (based on entity co-occurrences)

```
SELECT ?politician (count(distinct ?article) as ?num) WHERE {
   SERVICE <http://dbpedia.org/sparql> {
        ?politician a dbo:Politician }
        ?article dc:date ?date FILTER(?date >= "2007-06-01"^^xsd:date && ?date <= "2007-08-30"^^xsd:date) .
        ?article schema:mentions ?entity . ?entity oae:hasMatchedURI dbr:Barack_Obama .
        ?article schema:mentions ?entityPolit .
        ?entityPolit oae:hasMatchedURI ?politician FILTER (?politician != dbr:Barack_Obama)
} GROUP BY ?politician ORDER BY DESC(?num) LIMIT 5</pre>
```

• Identification of Similar or Identical documents

```
SELECT ?article2 (count(?entUri2) as ?numOfCommon) WHERE {
    nyt:9504E4D71530F932A35755C0A9619C8B63 schema:mentions ?entity1 .
    ?entity1 oae:hasMatchedURI ?entUri1 .
    ?article2 schema:mentions ?entity2 FILTER (?article2 != nyt:9504E4D71530F932A35755C0A9619C8B63) .
    ?entity2 oae:hasMatchedURI ?entUri2 FILTER(?entUri2 = ?entUri1)
} GROUP BY ?article2 ORDER BY DESC(?numOfCommon) LIMIT 5
```

Evaluation

- Objectives:
 - to show that for a bit more complex information needs, keyword-based search systems return poor results
 - Thus, calling for new, more advanced information seeking strategies!
 - to identify possible problems and limitations of our approach
- Setup
 - Archived collection: NYT corpus
 - 20 information needs of *exploratory nature*
 - each one requesting documents of a **specific time period**, related to some **entities of interest**
 - Each information need corresponds to one SPARQL query and one free-text query
 - Example of information need:
 - "find articles of June 2010 discussing about African-American film producers"
 - Corresponding free text query: "African-American film producers" (we manually specify the data range to each system)

Evaluation

- Comparison:
 - SPARQL query on Semantic Layer
 - Free-text query on **Google News** (appending the string "site:nytimes.com")
 - Free-text query on HistDiv [Singh et al., 2016]
 - Time-aware and diversity-oriented approach
- Manual evaluation of all returned results
 - Considering only articles existing in all systems!

Evaluation – Results

Big number of disambiguation errors

	Information need	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	Num of results	27	34	37	16	11	14	18	8	11	15	15	12	13	16	15	12	15	13	16	15
SPARQL	Num of relevant results	27	27	33	16	9	14	2	8	1	14	1	8	13	15	9	10	13	11	15	15
	Num of results	8	1	0	0	0	1	1	1	0	0	0	0	0	2	0	6	1	1	1	1
GOOGLE NEWS	Num of relevant results returned by SPARQL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
	Num of relevant results not returned by SPARQL	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Num of results	0	3	1	0	0	0	0	4	0	0	0	0	0	0	0	25	2	0	0	0
HISTDIV	Num of relevant results returned by SPARQL	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0
	Num of relevant results not returned by SPARQL	0		0	0	0	0	0	3	0	0	0	0	0	0	0	3	0	0	0	0

Information needs and full results available at: http://l3s.de/owa/semanticlayers/SemLayerEval.zip

Problems and Limitations

- False positive:
 - A returned document is not relevant due to disambiguation error
- False negative
 - A relevant document is <u>not returned</u> because:
 - An entity of interest was not recognized by the entity linking tool
 - Disambiguation error
 - **Confidence score** of extracted entity of interest below used threshold
- Temporal inconsistency
 - Change of entity properties
 - Completeness and freshness of used knowledge bases

Efficiency of Query Answering

- Query execution time depends on:
 - Efficiency of triplestore and server
 - Query itself
 - Use of costly operators (like FILTER, OPTIONAL and SERVICE)
- Indicatively:
 - ≈400 ms is the average execution time of the 20 queries used in our evaluation
 - Min: 56 ms, max: 2.4 sec
 - They all make use of SERVICE operator for querying DBpedia
 - Experiments on Openlink Virtuoso server installed in a modest personal computer (Intel Core i5, 8GB RAM)

- The results returned by a SPARQL query:
 - can be numerous
 - all equally match the query
- How can we identify and promote the most important results?

• Focus on ranking documents

- Two main cases:
 - Conjunctive (AND) semantics: requesting documents containing ALL query entities
 - Disjunctive (OR) semantics: requesting documents containing **AT LEAST ONE** of the query entities

"AND" semantics

SELECT DISTINCT ?article WHERE {
 ?article dc:date ?date FILTER(year(?date) = 1990) .
 ?article schema:mentions ?entity1, ?entity2 .
 ?entity1 oae:hasMatchedURI dbr:Nelson_Mandela .
 ?entity2 oae:hasMatchedURI dbr:F._W._de_Klerk }

Retrieve articles of 1990 discussing about Nelson Mandela and F. W. de Klerk

"OR" semantics

SELECT DISTINCT ?article WHERE {

?article dc:date ?date FILTER(year(?date) = 1990) .

?article schema:mentions ?entity .

?entity oae:hasMatchedURI ?entURI .

?entURI dc:subject dbc:State_Presidents_of_South_Africa }

Retrieve articles of 1990 discussing about state presidents of South Africa

- Related Works
 - Ranking of archived documents (for free-text queries)
 - Time-aware Retrieval and Ranking [Kanhabua and Anand, 2016]
 - Tempas [Holzmann and Anand, 2016], HistDiv [Singh et al., 2016]
 - Works by Kanhabua et al. (2016), Vo et al. (2016)
 - Ranking in knowledge graphs
 - Learning to rank for RDF entity search [Dali et al., 2012]
 - Swoogle [Ding et al., 2005], SemRank [Anyanwu et al., 2005]
 - NAGA [Kasneci et al., 2008], DING [Delbru et al., 2010],
 - ReconRank [Hogan et al., 2006], Noc-order [Graves et al., 2008]
 - **Our approach**: ranking archived documents in knowledge graphs
 - Availability of metadata and entity annotations
 - No access to full contents!

- What makes an archived document important given a **time period** and one or more **query entities**?
- Relativeness
 - the document should talk about the query entities as its main topic
- Timeliness
 - the document should have been published in a time period which is important for the query entities
- Relatedness
 - the document should discuss the relation of the query entities with other entities (that are important for the query entities in important time periods)

Baseline Probabilistic Modeling

• Relativeness: the probability to pick a document based (only) on the query entities it mentions

$$P(d|E_Q) = \frac{score^f(d, E_Q)}{\sum_{d' \in D_Q} score^f(d', E_Q)} \qquad \text{where:} \quad score^f(d, E_Q) = \frac{\sum_{e \in E_Q} count(e, d)}{\sum_{e' \in ents(d)} count(e', d)}$$

• Timeliness: the probability to pick a document based (only) on its publication date

$$P(d|t_d) = \frac{score^t(t_d)}{\sum_{d' \in D_Q} score^t(t_{d'})} \qquad \text{where:} \quad score^t(t) = \frac{|docs(t) \cap D_Q|}{|D_Q|}$$

 Relatedness: the probability to pick a document based (only) on other entities it mentions (no query entities)

$$P(d|E_{D_Q}) = \frac{\sum_{e \in ents(d) \setminus E_Q} score^r(e)}{\sum_{d' \in D_Q} \sum_{e' \in ents(d') \setminus E_Q} score^r(e')} \qquad \text{where:} \quad score^r(e) = idf_{\wedge}(e) \cdot \sum_{t \in T_Q} \frac{|docs(t) \cap D_Q \cap docs(e)|}{|D_Q|}$$

Baseline Probabilistic Modeling - Evaluation

- No existing ground truth dataset
- Manual evaluation of the results returned by 28 queries
 - 14 of "AND" semantics (7 of single entity + 7 of 2-3 entities)
 - 14 of "OR" semantics (7 of 2-3 entities + 7 of entity category)
- Graded relevance scale:
 - Score 3: The topic of the document is about the query entities
 - Score 2: The topic of the document is **not** about the query entities, however the query entities are important for the document context
 - Score 1: The topic of the document is **not** about the query entities, however the query entities are related to the document context
 - Score 0: The document has almost nothing to do with the query entities

Baseline Probabilistic Modeling - Evaluation

• All queries – NDCG scores

К	RANDOM RANKING	RELATIVENESS [A]	TIMELINESS [B]	RELATEDNESS [C]	[A]*[B]	[A]*[C]	[B]*[C]	[A]*[B]*[C]
5	0.27	0.42	0.26	0.40	0.47	0.47	0.44	0.50
10	0.34	0.46	0.33	0.48	0.49	0.51	0.49	0.52
20	0.45	0.58	0.47	0.62	0.61	0.62	0.61	0.62
ALL	0.68	0.76	0.69	0.76	0.77	0.78	0.76	0.79

- > Improvement of joined model compared to RELATIVENESS is statistically significant (paired t-test, $p \le 0.05$)
- Relativeness can be considered a baseline model since it relies on term (entity) frequency which is a classic numerical statistic reflecting the importance of the term (entity) to a document

Baseline Probabilistic Modeling - Evaluation

• Queries of "AND" semantics only – NDCG scores

К	RANDOM RANKING	RELATIVENESS [A]	TIMELINESS [B]	RELATEDNESS [C]	[A]*[B]	[A]*[C]	[B]*[C]	[A]*[B]*[C]
5	0.26	0.44	0.27	0.35	0.49	0.47	0.40	0.50
10	0.33	0.49	0.33	0.43	0.52	0.52	0.47	0.53
20	0.43	0.60	0.45	0.57	0.61	0.62	0.56	0.62
ALL	0.68	0.79	0.69	0.74	0.80	0.79	0.74	0.80

• Queries of "OR" semantics only – NDCG scores

К	RANDOM RANKING	RELATIVENESS [A]	TIMELINESS [B]	RELATEDNESS [C]	[A]*[B]	[A]*[C]	[B]*[C]	[A]*[B]*[C]
5	0.27	0.40	0.24	0.46	0.46	0.47	0.49	0.49
10	0.34	0.43	0.32	0.53	0.47	0.50	0.52	0.52
20	0.47	0.57	0.49	0.67	0.60	0.62	0.67	0.62
ALL	0.68	0.73	0.68	0.77	0.75	0.76	0.77	0.77

Conclusion and Future Work

Conclusions

- Data model and framework for constructing Semantic Layers for (web) archives
- Semantic Layers allow:
 - *** Exploring** web archives in more advanced and exploratory ways (entity-centric)

Integrating information (at query-execution time) coming from other semantic layers and knowledge bases
 Inferring new knowledge that is very laborious and time-consuming to derive otherwise (just with one query)
 Coping with common problems like temporal reference variants and multilinguality
 Making the contents of web archives machine understandable

- Quality of results depends on quality of entity annotations
- Baseline Probabilistic Modeling for ranking results
 - Considering TIMELINESS and RELATEDNESS improves the results significantly

Future Work

- Development of user-friendly interfaces on top of Semantic Layers
 - Faceted Search and Exploration
 - Translation of free-text queries to SPARQL
- Ranking of SPARQL results
 - Experimentation with other ranking schemes (Random Walk with Restart)
- Cope with temporal inconsistencies
 - Use entity URIs that lead to old DBpedia descriptions?

Thank you

Questions/Suggestions/Comments?

