

## Simulation in IR

**Evaluating and Measuring Information Retrieval Systems** 

In collaborations with David, Colin, Vu, Norbert, Krisztian, Maarten, Kal, Heikki, Jaana, Mark and Jaap

4<sup>th</sup> Alexandria Workshop 2017 Hannover, Germany

October 19th, 2017

## A Simulated Reality

- Simulation is an imitation of the operation of a real-world process or system over time
  - Requires a model of the user/system/process
- Simulation is used in many other areas
  - Aircraft Design, Chem. Eng., Physics, Bio, etc.
- Enables researchers to go beyond what is possible now,
  - and consider more alternatives, faster!
- Simulation has deep roots in philosophy
  - Are we in the matrix?

Azzopardi et al, 2011

# **The Power of Simulation**

- Hypothesize about the outcome of different interactions, user models, and interfaces
- Examine and explore the evaluation of the user and the interface, not just the ranking
- Provide a controlled environment where interaction can be reproduced and replicated
  - Cheap, Fast and Configurable

## **Possible Types of Experiments**

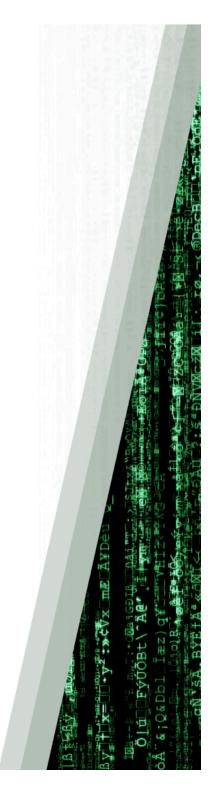
#### The What-If Experiments

What if the user acted differently, what if the interface provided different features, what if the system responded differently?

#### The Which/How Experiments

How should an application be used, which interactions/methods work best?

#### The Why Experiments


Why would a user behave in a certain way?

#### **Simulation Pitfalls**

- Where is the "user" in the user model?
- What is a good models?
- How do we make simulations re-usable and generalizable?
- There is no perfect simulation
  - Not a replacement of user experiments
  - Wont eliminate/replace users the ultimate judge
  - Shouldn't be employed with out thought

#### **Validation**

- Types of Validation
  - Replicability is the performance similar?
  - Predictive is the output the same?
  - Structural is the structure the same?
- Is the simulation any good?
  - Validation of simulations is important!
  - Ground with user data
  - And intuition <sup>©</sup>



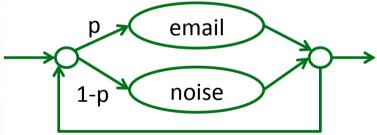
### Approaches to Simulation in I/IR

- Test Collection Based Approaches
  - Synthetic data
- Component Based Approaches
  - Query Generation, Document Examination, etc.
- Agent/Interface Based Approaches
  - User model
  - Interface model
  - Task/Context model
  - Objective Function / Constraints

| s<br>Ē |   | Bre'à, ££       | o ><br>± | > <b>1</b> C | я⊤ L<br>«G | 18 | + | ú |    | / J            | I ¢   | b.<br>J |
|--------|---|-----------------|----------|--------------|------------|----|---|---|----|----------------|-------|---------|
| ¢      |   | 1L>6A02         | Уm       | (£ á         | (6         | 力  | Í | Ø | ò  | Ø-             | J 5   | 1       |
|        |   | <b>升№137</b> ₽+ | H 0      | V7 !         | Z«         | X  |   | ő | Ŧ  | ア主             | ë ő   | X       |
|        |   | ) YIWŐ É        | lö       | y; (         | uÞ         | ó  |   | ā | a  | óχ             | / 1 á | M.      |
|        | 0 | □noí@ +         | u Y      | Ƴwàao        | àù         | Ì  | 2 | A |    | <sup>a</sup> A | :î>9ă | 40      |
|        | P | 1£0.0 Y         | Þ.       | uéK          | Web        | P  | 义 | N | ÔÜ | 2 ~            | A9;15 | Ò.      |

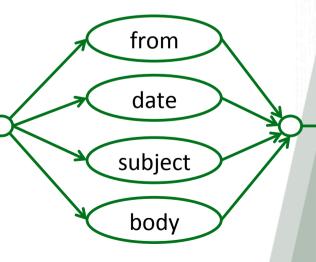
#### **SEARCH STARTS WITH A QUERY**

## Querying the System


- Queries lead to major variations in performance
  - Yet, we often ignore this in typical evaluations
  - Just use the title!
- People often express very short queries
- Prototypical querying strategies have been identified
  - Lots of very short queries, using pivot terms, etc.

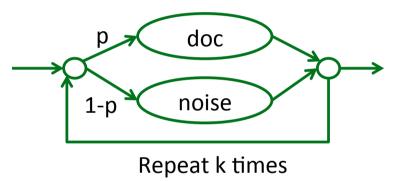
#### **Email Search**

- Context: TREC Enterprise Track
- Task: Email Known Item Search
- Example Topic:
  - Keith sent me an email about the BIM cooccurrence model last summer... I think ??
- Query:
  - Keith BIM June
- We had the collection, but few queries!


# A Generative Model for Email Known-Item Queries

- The user imagines the desired email
- Then tries to recall details from the email
  - But sometimes their memory is a bit fuzzy




The term is recalled \_\_\_\_\_
 from a field in the email

And repeated k times



# A Generative Model for Known-Item Queries

 More generally, we can generate such queries for any document type



 Where the model parameters k, p and the doc and noise language models – lead to different query styles/types

- And can create a test collection given a corpus
  - Generate <know-item document, query> pairs
  - CLEF 2006 Cross Lingual Web Retrieval Track
  - ClueWeb Known Item Retrieval

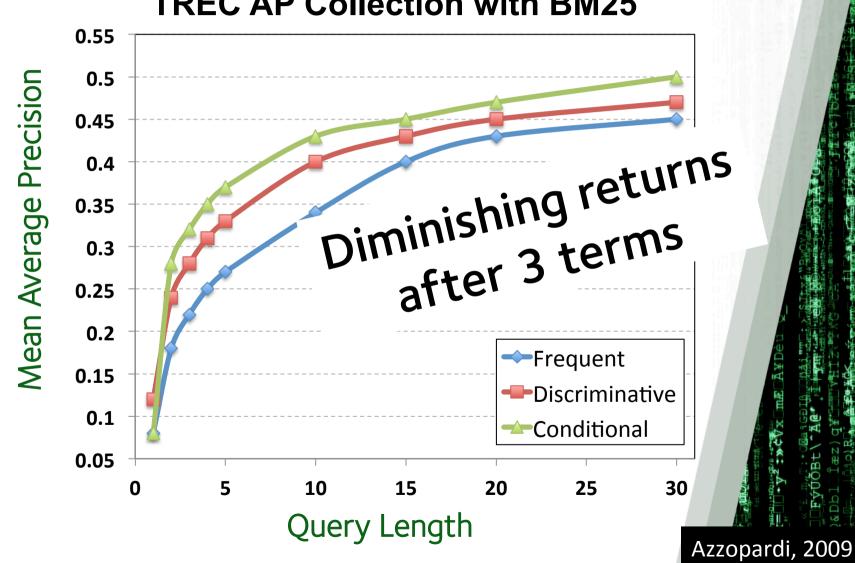
Balog et al, 2006

Hagen et al, 2015

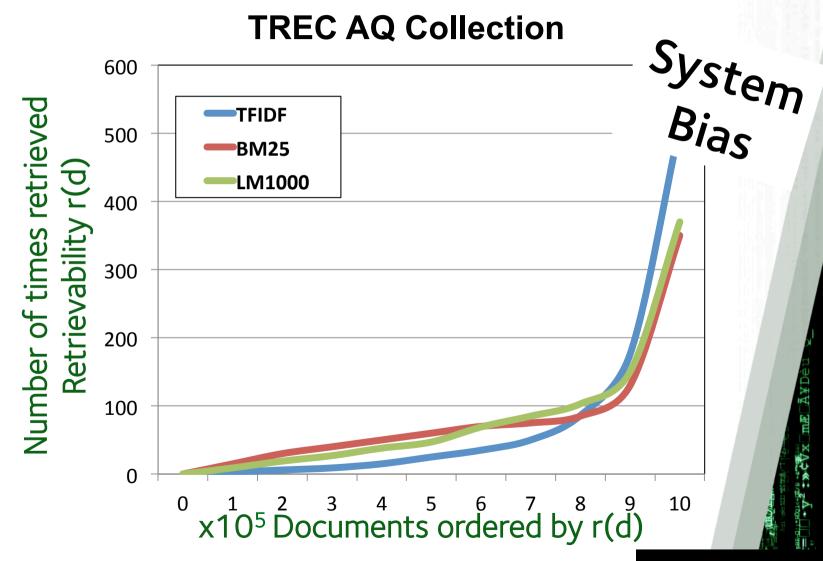
# What about generating queries for other tasks?

- If we have an existing test collection
  - < Topic, QRELS (d<sub>1</sub>,..., d<sub>r</sub>) >
- Then, we can follow a similar process and queries can be generated from:
  - Topic statements
  - Individual relevant documents
  - Sets of relevant documents
- A one million query track?
  - No Problem <sup>©</sup>

## TREC Topic 51: Airbus Subsidies


| Frequent                    | Discrimitive               | Conditional                    |  |  |  |
|-----------------------------|----------------------------|--------------------------------|--|--|--|
| German government subsidies | source program BOE         | Airbus 500 subsidy             |  |  |  |
| European defense ban        | Airbus airway Hill         | Airbus subsidy<br>unacceptable |  |  |  |
| agree like barrier          | Haussmann BOE<br>diplomat  | Hormon Airbus<br>subsidy       |  |  |  |
| European support subsidies  | Face Daimler country       | Aairbus subsidy price          |  |  |  |
| Aircraft Hill flight        | Mcdonnel talk<br>agreement | German Airbus<br>subsidies     |  |  |  |
| Tuesday Bohm new            | Boelkow Britain dispute    | Airbus official<br>ministry    |  |  |  |

#### We can generate queries! So What?


- Create an "infinite" amount of training data
- Evaluate Systems / Models / Algorithms
  - Efficiency
  - Performance
  - Bias / Retrievability
- Analyze Topics
  - Difficulty and Variance
- Examine Query Strategies
  - Length, style,
  - Quality, language

# **Query Length and Style**



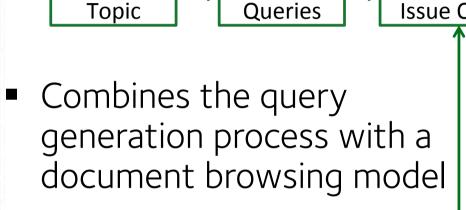



#### **Document Retrievability**



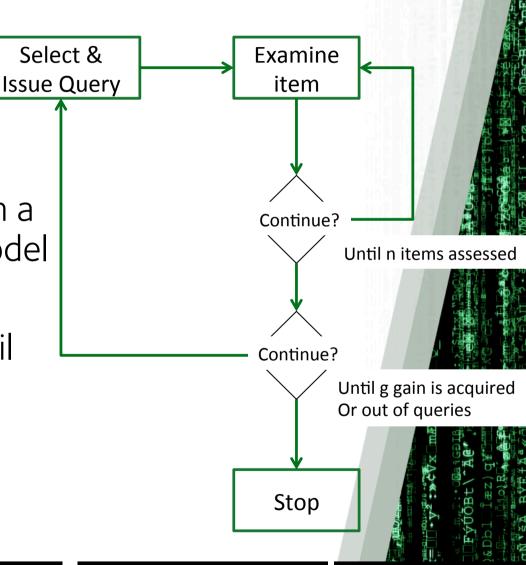
### **Other Query Generation Contexts**

- Many other contexts and situations where we simulated queries can and could be generated
  - Suggestions
  - Expansions
  - Sessions
  - Seasons
  - Time



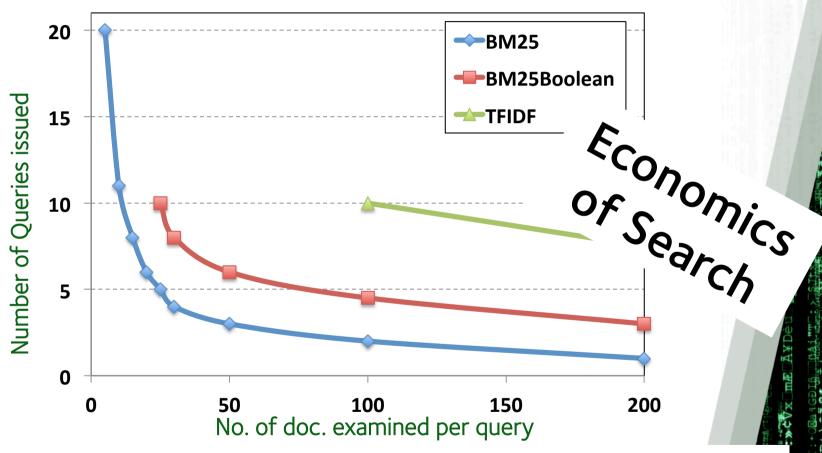

# SIMULATING THE SEARCH PROCESS




## Simple Searcher Model

Generate




Examine

 Accrues gain/utility until either the user finds enough or runs out of queries



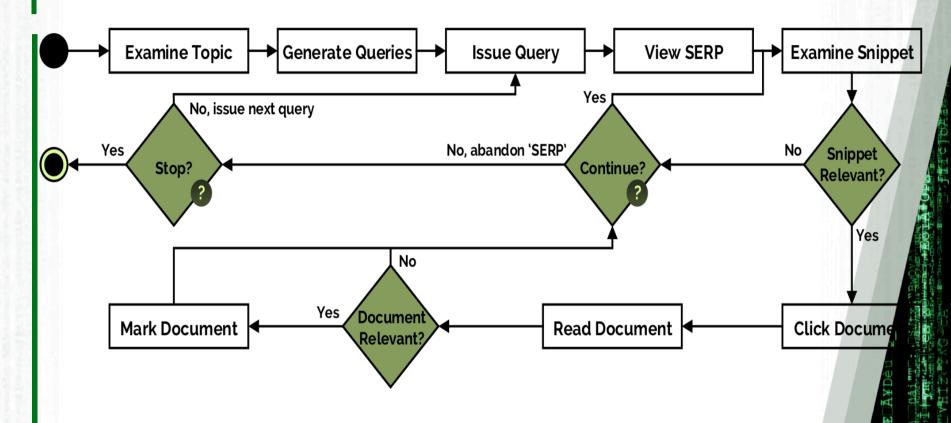
## **Analysis of Search Strategies**





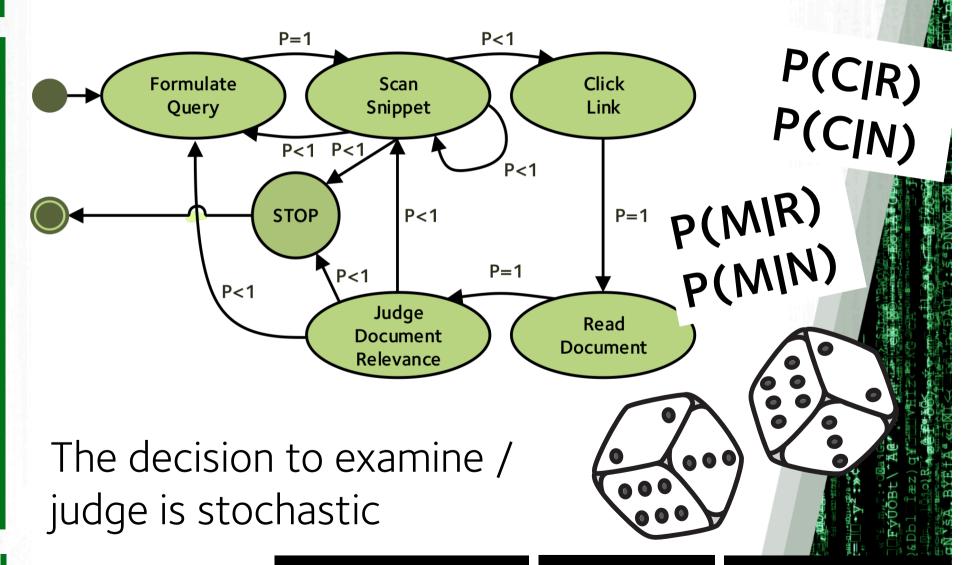
Interaction required to find 40% of the relevant document

## Insightful, but Limited!


- Simple Searcher Model is pretty Robotic
- People go to different depths
- People actually look at snippets
- People don't assess everything
  - If they like what they see, they click it!
  - Even if it isn't relevant!
- People take time to perform actions
  - Different reading, scanning, deciding speeds

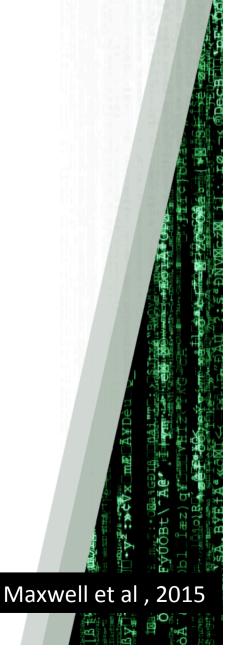


# CREATING A MORE REALISTIC SEARCH PROCESS

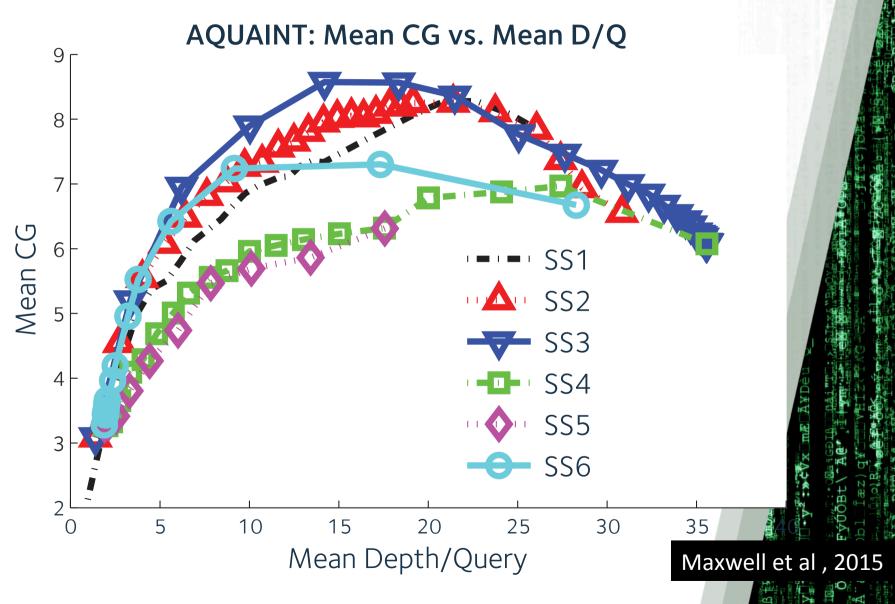



### Complex Searcher Model

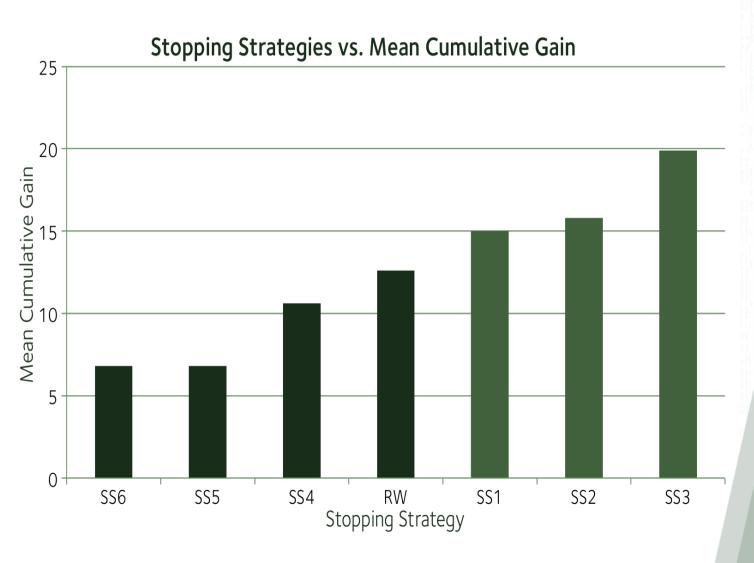



 Introduced more actions and decision point to provide a more detailed representation

### **Modeling Decision Points**

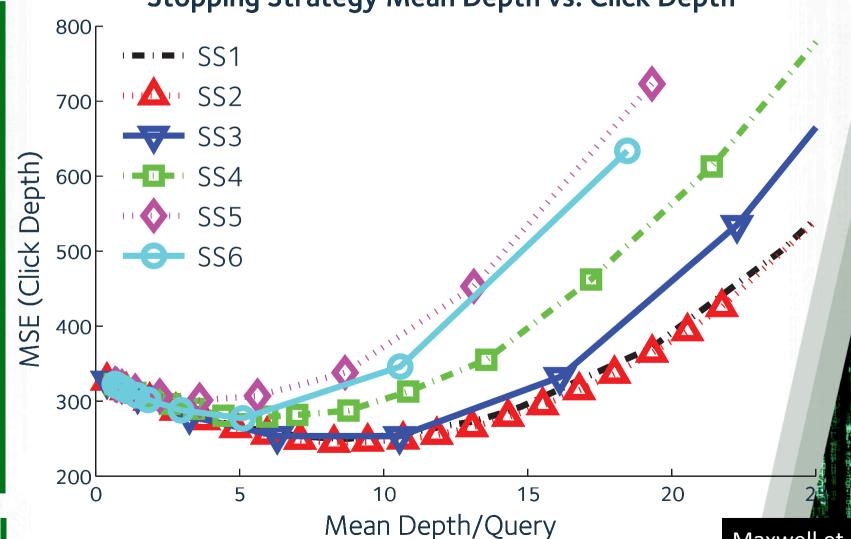



### **Stopping Strategies**


- Is a fixed stopping strategy reasonable?
  - How reasonable is something like P@10?
- Stopping Rules:
  - Fixed-Depth
  - Frustration / Disgust
  - Difference / Novelty threshold
  - Utility / Gain
- Context: Ad Hoc Retrieval
  - Find as many relevant document in 20 minutes
  - Simulations grounded with interaction times and interaction probabilities



## **Analysis of Stopping Strategies**




# Simulated Users vs. Humans



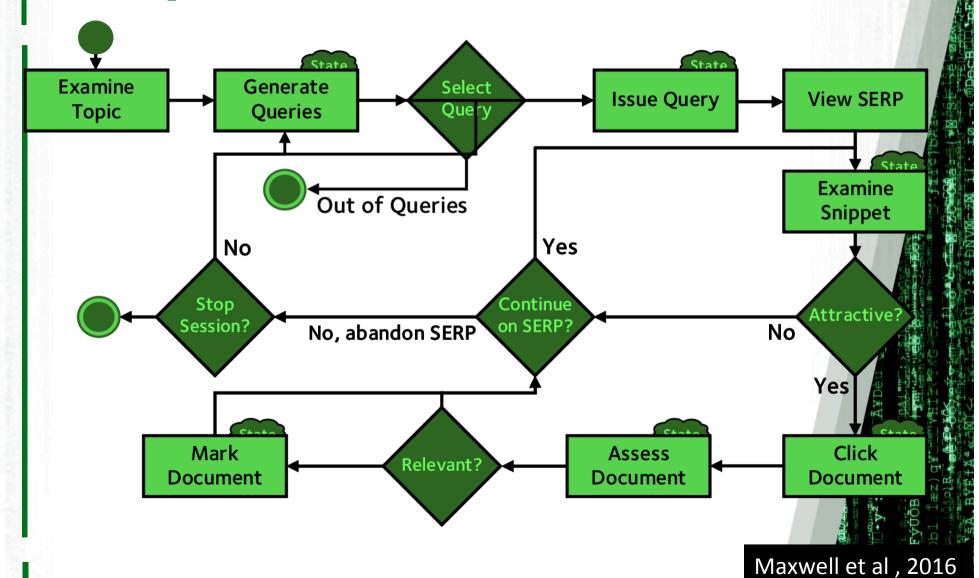
#### Simulated Users vs. Humans



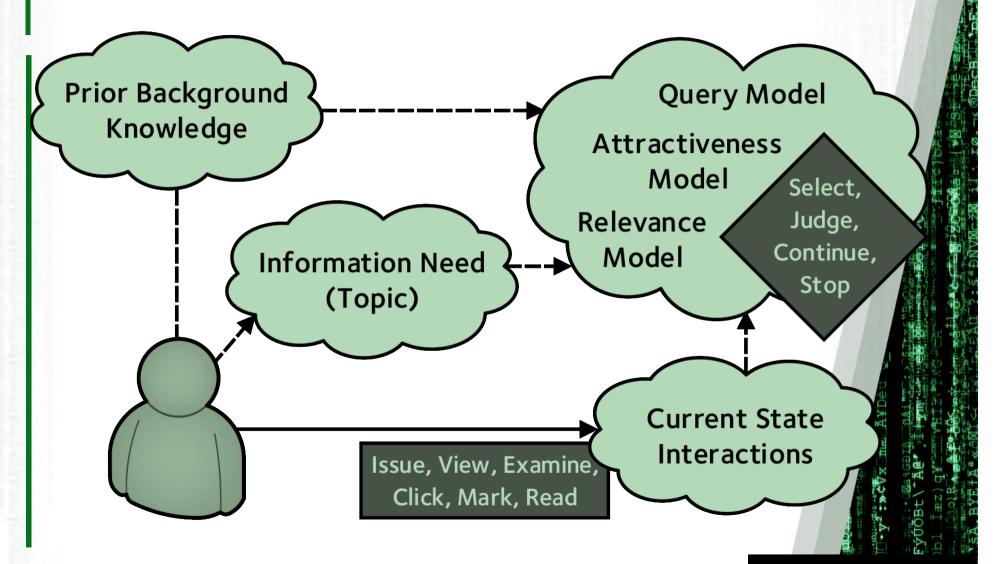


Maxwell et al, 2015




- They still essentially act randomly
  - Such users model produce interactions like real users
- It limits the context we can deploy them in
  - We need topics and goals
  - We need relevance judgments
- What if we create simulated users which
  - decide what to click on, and
  - decide what is relevant?



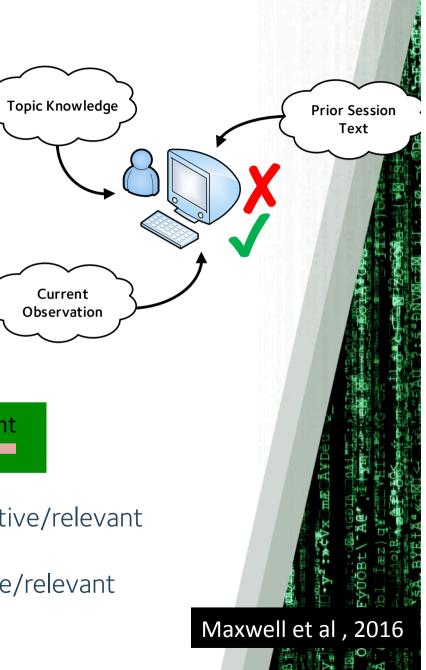

# ADDING AGENCY AND STATE TO THE SIMULATED USERS



#### Complex Searcher Model 2



#### **User State Model**




Language Models

- Mixture models based on:
  - Prior Observations
  - Topic Knowledge
  - Background Knowledge
- Decide if attractive/relevant based on a threshold



- Liberal more likely to judge as attractive/relevant
- Strict less likely to judge as attractive/relevant



CSM+USM

#### Search Agents

Autonomous agents, with cognitive state – can infer relevance

**Humans** 

Controlled study, interaction data

CSM

Simulated Users

TREC-style and stochastic simulated users



Autonomous agents,

with consitive state

VS.



48

VS.

humans



48

simulated users



48

agents

#### Humans

Controlled study, interaction data

stochastic simulated users

Sims vs Agents vs Humans

|                          |               | <u>W</u>      |              |              |            |            | 165            |
|--------------------------|---------------|---------------|--------------|--------------|------------|------------|----------------|
| Туре                     | TREC<br>Fixed | TREC<br>Stoch | Sim<br>Stoch | Sim<br>Stoch | Agent<br>S | Agent<br>A | Human<br>(AVG) |
| Query                    | QS3+          |               |              |              |            |            |                |
| Stop.                    | TREC          |               | _            |              |            |            |                |
| Behavior and Performance |               |               |              |              |            |            |                |
| Queries                  | 1.0           | _             | _            |              |            | _          |                |
| Snippets                 | 57            | _             | _            |              |            | _          |                |
| Docs                     | 57            | _             | _            |              | _          | _          | _ 7            |
| Marked                   | 57            | _             | _            |              |            | _          |                |
| Rel.                     | 22.3          | _             | _            |              |            | _          |                |
| CG                       | 35.4          | _             | _            |              | _          | _          |                |
| Prec.                    | 0.41          |               |              |              |            |            |                |



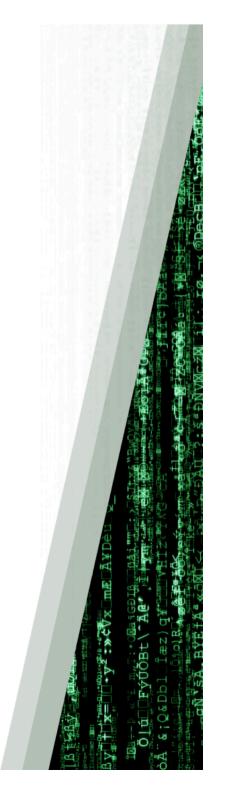
## DO SIMULATED USERS /AGENTS SEARCH LIKE HUMANS?



### **SIMIIR Toolkit for Simulation**

- An open source toolkit for developing simulations is available called SIMIIR
- Toolkit lets you configure various pipelines with different components
  - Query Strategies
  - Stopping Strategies
  - Decision Makers
- Available at:

http://www.github.com/leifos/simiir


Advertisement

## Challenges

- Simulation is a power tool that lets us explore and analysis behaviors and performance
- They are an abstraction of reality
  - Require many assumptions
  - Not a replacement of users
- There are many challenges:
  - Creating Realistic Simulated User/Agents
  - Creating Adaptive Agents
  - Change behavior like humans do in response to changes to the interface, costs, etc.

## Challenges

- User Model Issues
  - Simple, Complex, Complex II, etc.
- Estimation and Parameterization
  - Configuration of components
    - Query Strategy,
    - Stopping Strategy,
    - Decision Making, etc.
- Generalization to other tasks
- Handling the volume of data
- Trusting and validating the models



```
े ∤े □
१-१> 5
                                                                                     † 0
                                                                                                 /\ ] "/ $
                                                                                                       Ø
d
                                                                                                                    4
                                                                             a
                                                                           A P d E D
                                                                                     lás
                                                                                                     0 A ₹
8 7 $
                                                                                                            7
                                                                                                                / s a ( 8
      a 😉 📝
                             1
                                                                                                                    0
                             ¥
                                                                           7
                                                                                                                                8 7 7 7 0 7
11 4 8 8 6 F
7 1 0 7
£
                             3 A
                                                                             B BO II C 5 o
      1
        4
                       7
                                                                                                          ₩ ₫
                                                                                                                                             14
                                                4
                                                  1
                                                                      Œ
                                                                                           ₫
                                                                                                  Ð
                                                                                                                ¥
                                                                                                                            $ 5
                                                 * 8
                                                                        1 5
                                                                                  81
A
5
                                                                                      - Υ
- <del>Τ</del>
                                                                                                           J E
▼ Q Q ₹
                                                                       B ¥ Å
                                                                                                 3
                                                                                                          1 1
                                                                                                              7 ₹
                                                                                                                  4
                                                                                                                    3
                                                                                                                      7 }
                                                                                                                                  18 9
18 7
1 7 4
                                                                                                                    8
                                                                                                                        ₫ 9
                                                                       7 8
                                                                                                                  3 A
                                                                                                                            4101
                                                                           *
                                                                                                          图 4
                                                                                                              T
                                                                                                                                               R
                                                                                                                              4 K 6
                                                                                                      1 ° 1
                                                                                                                                               4
                                                                                                                2 U 8
                                                                                             2 dj
                                                    A 手 型
                                                                       A
                                                                                                                                     Λ
                                                                                           5
                                         6
                                                                                                                  #N 2 #
      1
                                                                \checkmark
                                                                                                       9 7
                                                                                                                  2 0
                                                                       į į
    Ŧ
                                         B ($
                                                                                                                                         d
                                                                                                 2 9
                                                                                                                  9 2
5 9
2 a
                                                                                       B 6
                                                                                                                                         Э
T.
                                                                                             3
                                                                                                                                         Ţ
                                                                                                                  / B 8
1 7
                                                                    € 3
                                                                                                  Λ <u>†</u>
                                                                                       Ø E
                                                                                                                    7 †
7 °
              ¥
                                                                    3 8 6
7 2 8
                                                                                                                          X
                                                                                                                               Ø
                             à
                                                                                                          * /
                            П
                                                                                                    3 %
                                                                                                                          7
                                                                                     9
                                                                                                          7 8
                                          y
                                                                                                                                1 1
                                                                                       5
                             E
                                                                                                    7 4
                                                                                     5
```

# Imagine if we had a personalized search agent?

- What if we could make a user model that encodes your search capabilities?
  - And this was then embedded in an agent!
  - Your personal, Mr Smith.
- The agent would anticipate your needs
  - And, hopefully, resolve them
  - Perhaps through some negotiation and dialogue
- Search will change from a very active process to a passive/push process
- How would we evaluate such agents?

## Take Home Challenges

- Develop autonomous search agents
- Evaluate session search and dynamic search user complex searcher models
- Evaluate the search performance of humans and agents
- Create for the new "users" of IR
- Move beyond search: search as a service

#### References

- Personalised Search Time Prediction using Markov Chains by Tuan Vu Tran, David Maxwell, Norbert Fuhr and Leif Azzopardi, ICTIR '17: Proceedings of the International Conference in Theory of IR
- Validating simulated interaction for retrieval evaluation
   <u>Teemu Pääkkönen, Jaana Kekäläinen, Heikki Keskustalo, Leif Azzopardi, David Maxwell, Kalervo</u>
   Järvelin, Information Retrieval: Volume 20 Issue 4, 2017
- Agents, Simulated Users and Humans: An Analysis of Performance and Behaviour, <u>David Maxwell</u>, Leif Azzopardi, CIKM '16: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management
- Simulating Interactive Information Retrieval: SimIIR: A Framework for the Simulation of Interaction
   <u>David Maxwell</u>, Leif Azzopardi, SIGIR '16: Proceedings of the 39th International ACM SIGIR
   conference on Research and Development in Information Retrieval
- Simulation of Interaction: A Tutorial on Modelling and Simulating User Interaction and Search Behaviour, Leif Azzopardi, SIGIR '16: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval
- Searching and Stopping: An Analysis of Stopping Rules and Strategies,
   David Maxwell, Leif Azzopardi, Kalervo Järvelin, Heikki Keskustalo, CIKM '15: Proceedings of to 24th ACM International on Conference on Information and Knowledge Management
- Exploring Behavioral Dimensions in Session Effectiveness
   <u>Teemu Pääkkönen, Kalervo Järvelin, Jaana Kekäläinen, Heikki Keskustalo, Feza Baskaya, David Maxwell, Leif Azzopardi, CLEF'15: Proceedings of the 6th International Conference on Experimental IR Meets Multilinguality, Multimodality, and Interaction
  </u>
- Untangling Result List Refinement and Ranking Quality: a Framework for Evaluation and Prediction, Jiyin He, Marc Bron, Arjen de Vries, Leif Azzopardi, Maarten de Rijke, SIGIR '15: Proceedings of the 38th International ACM SIGIR Conference 2015

### References

- An Initial Investigation into Fixed and Adaptive Stopping Strategies,
   David Maxwell, Leif Azzopardi, Kalervo Järvelin, Heikki Keskustalo, SIGIR '15: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
- Dynamic Test Collections for Retrieval Evaluation,
   Ben Carterette, Ashraf Bah, Mustafa Zengin, ICTIR '15: International Conf. on The Theory of IR
- INST: An Adaptive Metric for Information Retrieval Evaluation, <u>Alistair Moffat, Peter Bailey, Falk Scholer, Paul Thomas</u>, ADCS '15: Proceedings of the 20th Australasian Document Computing Symposium
- Best and Fairest: An Empirical Analysis of Retrieval System Bias, Colin Wilkie, Leif Azzopardi, ECIR 2014: Proceedings of the 36th ECIR
- Modeling decision points in user search behavior,
   Paul Thomas, Alistair Moffat, Peter Bailey, Falk Scholer, IliX '14: Proceedings of the 5th IliX
- The economics in interactive information retrieval, Azzopardi, SIGIR '11: Proceedings of the 34th international ACM SIGIR 2011
- Report on the SIGIR 2010 workshop on the simulation of interaction,
   Leif Azzopardi, Kalervo Järvelin, Jaap Kamps, Mark D. Smucker, ACM SIGIR Forum, Dec 2010
- Simulating simple user behavior for system effectiveness evaluation, <u>Ben Carterette, Evangelos Kanoulas, Emine Yilmaz, CIKM '11: Proceedings of the 20th ACM international conference on Information and knowledge management</u>
- A Corpus of Realistic Known-Item Topics with Associated Web Pages in the ClueWeb09, Matthias Hagen, Daniel Wägner, and Benno Stein. ECIR 15, In Proceedings of 37th ECIR, 20
- What Was the Query? Automatically Generating Queries for Document Sets with Applications Cluster Labeling. Matthias Hagen, Maximilian Michel, and Benno Stein, In Proceedings of the International Conference on Applications of Natural Language to Information Systems, 20

### References

- System effectiveness, user models, and user utility: a conceptual framework for investigation, Ben Carterette, SIGIR '11: Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval
- Query side evaluation: an empirical analysis of effectiveness and effort, Leif Azzopardi, SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval
- Automatically generating queries for prior art search,
   Erik Graf, Leif Azzopardi, Keith Van Rijsbergen, CLEF'09: Proceedings of the 10th CLEF
- Retrievability: an evaluation measure for higher order information access tasks,
   Leif Azzopardi, Vishwa Vinay, CIKM '08: Proceedings of the 17th ACM conference on Information and knowledge management
- Building simulated queries for known-item topics: an analysis using six european languages, <u>Leif Azzopardi, Maarten de Rijke, Krisztian Balog</u>, SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval
- Overview of WebCLEF 2006, <u>Krisztian Balog, Leif Azzopardi, Jaap Kamps, Maarten De Rijke</u>, CLEF'06: Proceedings of the 7th international conference on Cross-Language Evaluation Forum: evaluation of multilingual and multi-modal information retrieval
- Automatic construction of known-item finding test beds, <u>Leif Azzopardi, Maarten de Rijke</u>, SIGIR '06: Proceedings of the 29th annual international AC SIGIR conference on Research and development in information retrieval



- A Test Collection for Evaluating Retrieval of Studies for Inclusion in Systematic Reviews
  Harrisen Scells, Guido Zuccon, Bevan Koopman, Anthony Deacon, Leif Azzopardi, Shlomo
  Geva SIGIR '17: Proceedings of the 40th International ACM SIGIR Conference on Research
  and Development in Information Retrieval
- Clef 2017 technologically assisted reviews in empirical medicine overview
   Evangelous Kanoulas, Dan Li, Leif Azzopardi, Rene Spijker Working Notes of CLEF 2017
- Modeling behavioral factors ininteractive information retrieval
   Feza Baskaya, Heikki Keskustalo, Kalervo Järvelin CIKM '13: Proceedings of the 22nd ACM international conference on Information & Knowledge Management
- Time drives interaction: simulating sessions in diverse searching environments
   Feza Baskaya, Heikki Keskustalo, Kalervo Järvelin SIGIR '12: Proceedings of the 35th international ACM SIGIR conference